3-VULNERABILITY SESSION

Session Lead: Koren Nydick, Sequoia & Kings Canyon National Parks

GOAL: This session provides information on the vulnerability of focal resources (i.e., a "defining feature" or "critical attribute") and discussion of vulnerability components (exposure, sensitivity, and adaptive capacity), geospatial information, and uncertainty. Invited oral presentations and resource information briefs assist participants in completing group exercises in the vulnerability and strategy sessions. Focal resources used in this workshop were selected to test the change adaptation framework and pioneer a shared learning process. The intent is not to present a comprehensive or definitive statement about the vulnerability of each resource, but to explore how we collectively can use information on vulnerability for change adaptation planning. The vulnerability session occurs in plenary (large group). Participants sit in tables organized by focal resource.

8:30 – 9:00 am: Vulnerability Assessments: Components and Overview (25 min + 5 Q/A)

Danielle LaRock, CA LCC & USFWS National Conservation Training Center

- Define "vulnerability", including exposure, sensitivity, potential impact, and adaptive capacity.
- Explain the goals and objectives of a vulnerability assessment (e.g., do you need a qualitative, quantitative, or geospatial outcome? What is the scope?)
- Tradeoffs among methods: geospatial vulnerability versus qualitative assessment, etc.
- How to incorporate uncertainty.
- Briefly introduce USFS R5 vulnerability assessment project.

9:00 – 11:20 am: Case study presentations (6 @ 15 min + 5 min Q/A each + 20 min break).

- Identify vulnerability and/or its components: exposure, sensitivity, and/or adaptive capacity
- Be geospatially explicit when possible
- Include your treatment of uncertainty
- As a group, these case studies will demonstrate different types of vulnerability assessment methods.

Resource (Defining	Speaker	Talk Title	
Feature or Critical		S/SN = southern/Sierra Nevada	
Attribute)			
Watershed hydrology	Joshua Viers – UC Davis	Frameworks for freshwater ecosystem management	
		in the SN in an era of hydroclimatic change	
Meadows/ Wetlands	Matt Brooks - USGS	History & Vulnerability of Meadows in the SN	
Oak woodlands	Susan Antenen - CBI	Climate Vulnerability of Blue Oak Woodlands in	
		the SSN	
Forests	Mark Schwartz - UC Davis	Climate Vulnerability of Forests in the SSN	
Pacific Fisher	Wayne Spencer - CBI	Competing Risks and Vulnerability of the SSN	
		Fisher Population	
Birds	Rodney Siegel -Institute	A climate change vulnerability assessment for SN	
	for Bird Populations	birds	

11:20 – 12 noon: Interactive Group Mini-Exercise – (40 min).

<u>Goal:</u> The goal of the mini-exercise is to give participants a taste for determining what components of vulnerability are important when thinking about future objectives for the resource (i.e., a "Defining Feature" or "Critical Attribute") as well as strategies to achieve the objectives. How vulnerable is the resource? Where? Why? Are current objectives possible to achieve? If not, what should objectives be?

<u>Process</u>: At focal resource tables, each group will select a note-taker and work together to discuss and fill out a worksheet (see next page with example filled in). The note-taker is responsible for bringing the worksheet to the strategies session in the afternoon. It will be turned in at that time and be used as workshop results that will be synthesized into a post workshop report.

SESSION 3: VULNERABLITY MINI-EXERCISE

Defining Feature or Critical Attribute <u>Giant Sequoia</u> Table # _____

Names (optional) <u>EXAMPLE ONLY</u>

1) What are the critical components of vulnerability for the resource in the southern Sierra? Do not try to be exhaustive. Focus on what you consider to be the most important agents of change/stressors and the factors that make the "defining feature" or "critical attribute" exposed, sensitive, and adaptive.

Exposure (stressors)	Sensitivity	Adaptive Capacity
Climate change and its	Water requirements: Life	Genetics: some genotypes
effect on moisture	stage & health of tree.	may be more resistant to
availability: higher climatic	Water availability: density	drought, pathogens, or
water deficit that weakens	of stand & competition with	ozone than others.
trees and reduces the	other vegetation for water;	
probability of successful	location (latitude,	Migration potential:
regeneration and	elevation, aspect, slope);	suitable soil conditions
recruitment	groundwater sources	located upslope adjacent to
		current groves might allow
		for some amount of natural
Climate change and its	Resistance/resilience to	movement to future
effect on fire regime: more	severe fire: life stage &	suitable environments
very severe fires that kill	health of tree	
mature trees	<u>Fuel loads:</u> natural	<u>Management can increase</u>
	variability & past	adaptive capacity by: 1)
	management (below)	decreasing competition for
	Probability of ignition:	water by other vegetation,
	location	2) reducing fuels and
Fire suppression: reduced	Past management: Fire	facilitating conditions for
regeneration & increased	return interval departure;	regeneration to occur, 3)
probability of more severe	soil & light conditions; fuel	assisting migration to new
fires	loads; ladder fuels	climatically suited areas.
Interactions: with effects of	Location: elevation, latitude	
air pollutants, pathogens, &		
other stressors		

- S. Sierra Adaptation Workshop -2/11/13
- Given the vulnerability of this "defining feature" or "critical attribute" in the S. Sierra, are current management objectives feasible? Why or why not? (Don't try to be exhaustive. List 1-3 objectives and discuss those).
 Current objectives:
 - Restoration of "natural" (preEuropean) fire regimes in giant sequoia groves
 - Self-sustaining sequoia population w/ mixed size-class distribution in current grove locations
 - Persistence of iconic giant sequoia trees.

No, moving into the future we cannot expect to be able to return to pre-European grove conditions, especially for community composition. A selfsustaining population, persistence of groves, and especially individual trees, in their current locations is likely impossible.

3) If you answered no above, what should be the "retrofitted objectives" for this "defining feature" or "critical attribute"? (List as many as you want).

Sequoias persist in the S. Sierra:

- Increase resistance & resilience of selected grove areas (high value &/or likely climate refugia) to maximize regeneration & minimize increase in mature tree mortality such that groves persist in these select areas.
- Facilitate migration of sequoia to new areas with suitable conditions.