Aging of Large Giant Sequoia

Ariel C. Thomson and Robert A. York

Introduction

Giant sequoia is one of the most well know species in the world. It is an iconic species known for its overwhelming size and assumed
long-lived nature. Because of their massive size, however, accurate age estimates are elusive. Understanding the ages of these beautiful trees can be a very important piece of information to have when considering

This project had three eprimary objectives:
(1) gather general age information for all

\qquad (1) gather general age information for all of the study trees. This was done to determine general
differences, if any, in age within or between the various groves used in the study. Using a previously developed equation (Stephenson and Demetry 1995), age estimates were made to help
understand the release potential of old trees.
(2) see if any methodology improvements could be made. These included measurements of wet and
dry lenoths of cores to improve accuracy We specifically examine the potential for improvement to the "shrinkage-coefficient", which is related to the shrinking of cores that occurs following collection.
(3) we addressed the question: Do older trees actually look older? This was a subjective effort done
by synthesizing age estimations, tree measurements, and pictures of each tree by synthesizing age estimations, tree measurements, and pictures of each tree.

Results

Age Estimates:

Figure 2 (above): Histogram of tree ages from all 7 study gro
applied
apies
applied)
Figure 3 (right): : Box plot of ages by grove.

Shrinkage Coefficient Results:

Figure 4 : Histogram of shrinkage
results (with outliers included)
Do They Look Older?
A Case Study:
The two trees shown at right
both have somewhat iregular both have somewhat irregular
shaped crowns, however shaped crowns, however
Lockwood 6 has a much more distorted crown and larger
limbs. There charaterisicis limbs. There characteristics
would generally lead to the assumption that Lockwood Tree
6 is onder 6 is older, however, it is the

Through the synthesis of age estimations, tree measurements, and tree pictures we subjectively found that basing relative tree age estimates off physical attributes does not always give good results and that basing relative tree age estimates off physical attrib
certain characteristics are better predictors than others.
Conical Crown Shape: Generally canopies with well-defined conical shapes are considered to be younger than those with less defined canopies. While we found this to be the most reliable predictor, there were many instances of similar crown shapes having ages differing by over 500 years. Branch Form: In general, larger branches and greater reiterations (a branch turning up into a
secondary main stem) are a signs of age. We found this to be a highly variable and unreliable Diameter Size: Diameter is often considered an indictor of age, however we found that this was not always the case. In multiple instances the diameter differed by $3-6 \mathrm{ft}$ yet ages were no greater than 100 years apart.

Discussion

Age Estimates: While our estimates are nowhere near exact we were able to find valuable age data that has never existed before for multiple groves. These ages were found as a component of a large research project looking at the release potential of old giant sequoia post high disturbance activity. Studies of this nature have been done in the past, but never with age estimations in conjunction.
These ages will be able a valuable component of this research project (York et at. 2010 and York These ages will be able a valuable component of this research project (York et at. 2010 and York
unpublished data). We did not find a distinct age distribution between groves, but instead found variability within and between groves. In some instances we found groves with small age ranges, which may be a predictor of regeneration post high severity disturbance.
Shrinkage Coefficient: In attempting to improve the current aging methodology we examined the possibility of improvements to the shrinkage coefficient. This figure is necessary as counting the the coefficients tended towards 1.04-1.05 they had the ability to be highly variable. Not only can they be variable, but our average ratio is much larger than the 1.02 figure used by Stephenson and Demetry (1995). 1.02 is a reasonable figure, but shows the importance of obtaining core-specific neasurements when possible. When core-specific measurements are not taken there is a chance to over or underestimate the age of trees.
Do They Look Older? Few people have spent large amounts of time examining both the ages and physical appearance of these large trees. While the synthesis of information in this area is highly
subjective it may have implications for future discussions of the definition of "old growth". Due to the highly variable physical characteristics of trees in relation to age common ideas of an "old growth" tree being defined by a certain age could be questioned.

Conclusions			
Our Trees Versus the Famous Ones			
Tree	Diameter (m)	Age	4
CBR26	5.8	3266	\%
General Sherman	7.325	2150	(x)er
Grant Tree	8.8	1700	(rex $<$
Grizly Giant	7.8	1780	+
Lockwood Tree 12	5.48	2458	W1* *
Lockwood Tree 13	4.5	1745	465
Bearskin East 1	4.253	1677	
Table 1: shows the ages of various samples trees against the few known and estimates ages of famous living trees and stumps. Indicates the great increase in available age data.			

Giant Sequoia is perhaps the most recognizable and most visited species in the Sierra. It is species. Before this project little data existed to confirm this assumption. While the ages that we found were not found with great accuracy, as logistically this is near impossible, they greatly increased our current knowledge of sequoia ages and will be valuable for future research and to
feed the public's curiosity.

References and Acknowledgments

Stephenson, Nathan L, and Athena Demerry. "Estimating Ages of Giant Sequoias." Canadian Journal of Forest Research. 25.2 (1995): 223. Print.

Stephenson, Nathan L. "Estimated Ages of Some Large Giant Sequoias: General Sherman York, R A J Betles D Fuchs , I S.L Stephens "Radial Growth Reso in Large, Old Sequoiadendron Giganteum." Applied Vegetation Science. 13.4 (2010): 498-509 Print.

Special thanks to the SPUR Program for funding and to Ricky, Katie, and Kenton for field work help!

