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A Monitoring Network for Detecting Climate Change Effects on the
Ecology of Sierra Nevada Streams: Benthic Macroinvertebrate Indicators
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ABSTRACT SITE SELECTION 3 Years Contrasted Cover Wide Hydrologic Range: RESULTS (continued)
2010 average to just above average
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FIELD METHODS EF Neleor chemls.try), gnd In associated biological .commun.ltles“. )
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The goal of this project is to document how mountain stream ecosystems - pH, conductance, alkalinity, silicate Warner ] . _Intermlttent drym_g poses a clear risk to sustaining biodiversity, esp.

respond to altered flow regimes, changing physicochemical conditions and > Data Loggers for Stage-Height (flow) .Cathedral In snowmelt-dominated streams, but groundwater systems appear to
warming temperatures, and set a baseline for contrast to an uncertain future. and Temperature (water & air) Forester Pass “Upper Cathedral be more buffered (confirming a predicted climate risk-resistance)

This would be enabled through the continuation of data collection from an > Biological Community: *Deer —
established stream network in the Sierra Nevada of California. This network . Benth nvert b- t *Pitman — SOUTH

integrates physical and biological monitoring in order to determine how Alen ' macromv(e;r et:" Eihl & taxa) *Snow Corral POSSIBLE COLLABORATIONS:
: ; : ; : ¢ gae resources (bentnic a axa «Crown .. ] ] ] ] ]

hydrocll_matlc shifts are linked to ecosy_stem structure and function through . | ryndal | = INPUT: Refining the Risks (need hydrological change indicators; see list)

changes in the flow and temperature regime of vulnerable headwater streams Organic matter resources (FPOM-CPOM) N o | . INPUT: Refining Ecolodical Vul bilit q : ol feat
where sustaining water resources originate. A .Fpper ubbs - Refining Ecological Vulnerability (nee_ environmental features
_ _ Example catchments in SEKI: . .U;rsj:e;ynda” of streams and biological traits of species; see list)

For the purposes of management, this network will show status and trend of Headwaters of Bubbs and F R —— SE Tarmarack INTERMITTENT = OUTPUT: Biological structure and function responses of headwater
resource integrity and an early-warning system for detecting ecological impacts B Unoer Bubbs Creek stream communities and ecosystems to hydroclimate variation (planning)
of climate change. Observed responses will provide guidance for prioritizing _ Tyndall Creek _ | Forester Creek S | _ y y P g
the settings where vulnerable watersheds can most benefit from climate Third-order catchments with 7] Upper Tyndall Creek Community Similarity Tree = OUTPUT: Detailed data |095 of flow an_d te_mperat_ure from headwater

adaptation actions. The protocols give tools for assessing ecological resilience. 1st-2nd order tributaries B 7yl Creek streams up and down the Sierra (for validating/calibrating models?)
ALAS, NO FUNDING AT PRESENT TO CONTINUE.........
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