AN ASSESSMENT OF SNOW COVER IN 4 MAJOR RIVER BASINS OF SOUTHERN SIERRA NEVADA AND POTENTIAL APPROACHES FOR LONG-TERM MONITORING (3G) Robert Rice and Roger C. Bales, University of California, Merced/Sie rra Nevada Research Institute

Daily snow water equivalent (SWE) was reconstructed for 2000-2009 using canopy-corrected fractional snow covered area (fSCA) from MODIS and a temperature-index snowmelt calculation. The MODIS fractional SCA was based on the MODSCAG (MODIS Snow Covered Area and Grain size/albedo) model, and provides a daily estimate of SCA across complex terrain. The few ground-based index sites for snow measurement can in many years provide good statistical estimates of total seasonal runoff in the basin; but they do not form the basis for spatial estimates of snowpack and snowmelt distributed over the year. The latter are essential for a number of critical resource-management decisions, and are critical inputs to more physically based hydrologic forecasts. We analyzed the fraction of area that was snow covered, by $300-\mathrm{m}$ elevation band, in the San Joaquin, Kings, Kaweah, and Kern River basins on the western slope of the Sierra Nevada. These basins range in size from 2846 to 6142 km 2 , with snow occurring mainly above 1500 m . Our analys is provided estimates of when the snow-covered area was at a maximum, when the snow started melting, how fast it melted and when melt was nearly complete. The fractional snow-covered area (SCA) derived from satellite data was highest above 3600 m , often over 90%. SCA decreased with elevation, with values in the $1800-2100 \mathrm{~m}$ elevation peaking well be low 50%. In some years SCA at this elevation was barely detectable. Snowcover depletion occurred at average rates of $15-17 \mathrm{~m}$ of elevation per day, which is equivalent to each $300-\mathrm{m}$ elevation band melting out 2-4 weeks later. In addition, SWE from snowmelt increased $0.4-0.8 \mathrm{~m}$ per 1000 m . Assuming that snowmelt is sensitive to temperature, and that on average temperature decreases 60 C per 1000 m elevation, each 2 oC of climate warming would shift the observed snowmelt patterns upslope by 300 m , or shift the snowdepletion dates in a given elevation band earlier by approximately 3 weeks. Daily snow melt volumes, estimated from the daily SCA and energy-balance calculations, show a similar shift and a significant reduction with a $2-60 \mathrm{C}$ increase in average temperature across the 4 basins. Going forward, management of water dependent resources should consider an adaptive-management approach, involving a continual cycle of investigation and synthesis to inform decision-making, and deve loping more-definite scenarios for temperature, precipitation, snowpack, snowmelt and streamflow.

Key words: Snow, water quantity, climate, streamflow, precipitation

