
DISTRIBUTION

The giant sequoia, Sequoiadendron giganteum, is found 
only within a 400 km (250 mi) long, 15 km (9 mi) wide 
belt along the western Sierra Nevada range, within 
elevations of 1,400-2,150 m (4,600-7,000 feet) depend-
ing on latitude. There are 75 groves of the giant sequoia, 
covering about 17,500 hectares1(Figure 1). Groves are 
dominated by white fir, followed by sugar pine and giant 
sequoia2.

PAST AND CURRENT MANAGEMENT

Past management actions that have affected current 
conditions of giant sequoia include logging, fire exclu-
sion, and prescribed fire. Until 1980, 23% of grove area 
was commercially logged; 6% was selectively logged by 
the USFS until 19921,3. As of 1996 over half of all groves 
prohibited commercial logging and prescribed fires, 
while 18% were protected from commercial logging 
and treated with prescribed fires. Currently, all agencies 
prohibit logging for sequoia commercial purposes within 
groves (although CDF allows commercial harvesting in 
young sequoia plantations near Mountain Home Grove4). 
Prescribed fire, managed wildfires, and/or mechanical 
thinning are used to manage grove conditions, although 
not all groves are treated (see Table 1 for justifications 
for using different management techniques). Some 
USFS lands also have a silviculture program and have 
plantations of planted sequoias57. Constraints on active 
management of groves include low risk tolerance for 
escaped fires, effect of smoke emissions on air quality, 
public opposition to thinning, costs, and potential scarring 
of iconic giant sequoia trees (see Figure 2). As a result, 
less than 20% of the forests in Sierra Nevada are currently 
receiving fuels treatments5. 
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FIGURE 55.2

The 75 naturally-occurring
sequoia groves in the Sierra
Nevada (indicated by dots)
are small and scattered. Most
are found south of the Kings
River (which separates the
Sierra and Sequoia National
Forests) and are on national
forest, national park, or other
public land. Roughly 8% of all
grove area is privately owned.
(SNEP map by John Aubert.)

Most of the 75 naturally-occurring sequoia groves occur in
the southern Sierra Nevada, south of the Kings River (Rundel
1972a; figure 55.2), collectively occupying about 14,600 ha
(36,000 acres). 1 Most are under federal jurisdiction; about 49%
of all grove area in the Sierra Nevada is managed by the U.S.

Forest Service (USFS), about 28% by the National Park Service
(NPS), and less than one percent by the Bureau of Land Man-
agement. 2 (Percentages are of total Sierra Nevada grove area,
not number of groves.) Other public ownership includes 11%
of all grove area, variously managed by the California Depart-

Figure 1: Location of giant sequoia groves. The USFS manages near-
ly half of grove area, while 28% is managed by NPS, 1% by the BLM, 
11% by other public agencies (including CDF, CDPR, UC system, and 
Tulare County), 8% by private owners, and 4% by the Tule River Indi-
ans3. (Figure adapted from Sierra Nevada Ecosystems Project 1996)
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Agency Abbreviations: BLM (Bureau of Land Management); CDF (California Department of Forestry and Fire Protection); 
CDPR (California Department of Parks and Recreation); GSNM (Giant Sequoia National Monument); INF (Inyo National 
Forest); NPS (National Park Service); SEKI (Sequoia - Kings Canyon National Parks); SNF (Sierra National Forest); SQF 

(Sequoia National Forest); UC (University of California); USFS (U.S. Forest Service); YOSE (Yosemite National Park)
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STRESSORS AND CURRENT GROVE 
CONDITIONS

Regeneration is one of the largest issues facing the future of 
the giant sequoia.   Sequoias are dependent on fire and high 
soil moisture for successful regeneration. A proxy often used 
to assess grove condition is the fire return interval departure 
(FRID)6.  Based on the reconstructed fire regime prior to 
Euroamerican settlement, low FRIDs indicate that the last 
fire occurred within the historic interval and extreme FRIDs 
indicate that five or more return intervals have passed.

In a study conducted on 70 groves located within SEKI, SNF, 
GSNM, UC, and CDF lands, most groves were between high 
and extreme departures of their natural fire interval (3 groves 
had low FRID, 5 had moderate, 10 had high, and 52 had 
extreme FRID)6. Furthermore, less than 20% of the Sierra 

Nevada’s forests are receiving the fuels treatments necessary 
to return the forest to its natural FRID. Beyond regeneration, 
mortality rates of tree species co-occurring with sequoias 
have doubled in recent decades, possibly a consequence of 
warming over the last century7,8 (although monitoring data 
are inadequate to determine whether mortality has increased 
in the sequoias themselves).  See Table 2 for current and 
future stressors affecting giant sequoias and their adaptive 
capacity.

POSSIBLE FUTURE CHANGES AND 
SEQUOIA ADAPTIVE CAPACITY

Although predicting future climates is extremely complex, 
the climate models driven by the three main IPCC emis-
sion scenarios agree that temperature in the southern Sierra 
Nevada will warm, with predictions between +2.6 to 3.9°C 

Table 1: The most commonly used management tools for giant sequoia groves, their justifications and constraints

Justifications (Positive Effects) Prescribed Fire Mechanical 
Thinning

Mechanical 
Thinning + 
Planting

Mechanical 
Thinning +  
Prescribed Fire

Creates conditions most similar to pre-Euroamerican arrival3 X   X

Greatly stimulates sequoia seed release3 X   X

Reduces density of non-sequoia understory growth3,9 X X X X

Opens gaps which allow sunlight penetration to forest floor3 X X X X

Kills pathogens in soil that affect sequoia seedlings3 X   X

Creates better soil conditions for sequoia germination: ash 
instead of bare mineral soil, more acidic pH and added 
nutrients to soil,  burns away duff4,10

X   X

Reduces fuel load and likelihood of high severity fires that 
could kill adult sequoia

X X X X

Promotes a significantly larger young age-class11,12,13 X  X X

Increases structural heterogeneity within stands14,15 X decreased decreased X

Increase in height and diameter of mature sequoias16,17,18,19 X X X X

Reduces fuel load below an extreme level before fire is 
used20,21

   X

Constraints (Negative Effects)     

Air quality regulations4 X X

Risk of fire damage to human establishment X   decreased

Little to no new regeneration of sequoia3,4,22  X X  

Cost per acre for NPS (1970-2011)5* $143-458 No data No data No data

Cost per acre for USFS (2004-2011)5* $72-619 $252-1077 No data No data

Creation of entry points for pathogens via cut stumps3,23 X X X

Creation of entry points for pathogens via tree scars3 X X

Potential for soil compaction and erosion3 X X X

Potential for introduction of invasive plant species X X X X

Creation of roads and other access infrastructure X X X

Burns of insufficient intensity to facilitate sequoia 
regeneration 24

X X

*Lands included were SEKI, YOSE, INF, SNF, and SQF. Costs were higher per acre for NPS because less acreage was burned, 
and prescribed burning cost decreases with acreage.
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Figure 2: Although fire can scar charismatic giant sequoia (left), it also creates a good environment for sequoia regeneration (right). 
Photo Credits: K. Cummings, NPS (left) & BLM (right).

by 210025. Less certain is the change in precipitation – of the 
18 general circulation models that include California, about 
half predict decreases and half predict increases for the Sierra 
region25. Even with little changes in precipitation, effective 
drought will increase as snow melts earlier and evapora-
tive demand increases, and could cause changes in wildfire 
regimes, snowmelt patterns, and more (see Table 2).

Sequoias will be most affected by changes in fire regime and 
water availability, as these are the two factors most influenc-
ing their regeneration. Sequoias require relatively higher soil 
moisture, although their exact water requirements remain 
undefined.  The water holding capacity of soils within study 
groves in SEKI was significantly higher than surrounding 
conifer forests26, and one study in SQF showed that moisture 
was still available for uptake in the underlying bedrock27.  
The authors estimate that annual precipitation of less than 68 
cm would fail to maintain this water source on upland sites 
past late summer.  The average precipitation for 70 groves 
studied within SEKI, SQF, and GSNM was estimated to be 
104 cm/yr, with a range from 69-115 cm/yr. If precipitation 
decreases, as some climate change scenarios predict, sequoi-
as will face longer periods of drought during their growing 
season. Figure 3 shows projection of potential climate stress 
for giant sequoia groves under two different scenarios.

Giant sequoia have already shown vulnerability to warmer 
temperatures and the subsequent increase in drought stress in 
the past. Based on pollen records, giant sequoia experienced 
population decreases during the slightly warmer time period 
of 10,000-4,000 years ago28. Today’s grove structure and lo-
cations may not be viable for the species in the future as their 
required climatic conditions could move higher in elevation 
and northward, forcing a range expansion away from the 
warmer and drier conditions that may be found at their cur-
rent elevation range4. It is unknown if giant sequoia will be 
able to successfully migrate or if the future survival of these 
groves will necessitate assisted migration.

POTENTIAL MANAGEMENT 
STRATEGIES (WORK IN 
PROGRESS)

•     To manage for persistence:
-	 Plant and irrigate seedlings 
-	 Suppress fires with high risk of severity 

and stand replacement 
-	 Install fuel breaks along strategic loca-

tions to limit fire spread 
-	 Mechanically thin forest or use pre-

scribed fire to reduce competition for 
moisture 

-	 Promote sequoia regeneration and for-
est heterogeneity with prescribed fire 

•     To manage for change: 
-	 Plant groves with drought resistant spe-

cies and genotypes 
-	 Assist migration upslope to suitable ar-

eas for sequoia 

•     Delay deciding (monitor and research):
-	 Monitor moisture stress 
-	 Research moisture requirements 
-	 Monitor sequoia regeneration
-	 Monitor for pathogen outbreaks

Authorship Note 

This information brief was created by Katy Cummings 
(NPS) and Koren Nydick (NPS), with review and contribu-
tions from Tony Caprio (NPS), Nate Stephenson (USGS), 
and Eric Winford (NPS).
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Table 2: Current stressors, potential climate change impacts, and characteristics affecting adaptive capacity for the giant 
sequoia grove ecosystem

Current Stressors Potential Impacts to Ecosystem Potential Impact to Sequoia

Wildfire Exclusion

Homogeneous soils29; higher proportion of 
dense intermediate-aged forest patches 
to young patches11,12,13; closed forest 
conditions with fewer gaps9; lower shrub/herb  
abundance22; buildup of surface fuels20,21

Halted regeneration; increased likelihood of catastrophic 
fire; pest and pathogens infection more likely3

Air Pollution

Increased ozone levels Foliar injury; lowered photosynthetic efficiency in 
seedlings and saplings30,31

Nitrogen deposition

Reduced germination success from long-term reductions 
in litter decomposition rates and resulting thick litter 
layer; competitive advantage for species that can 
rapidly utilize extra N32; reductions in fine root biomass, 
increased [N] in streams, increased volatilization 
of N from soil, decreased C:N in soil and foliage, 
nitrate accumulation in foliage, altered rates of letter 
decomposition33,34

Pathogens and Pests

Infections to neighboring trees from annosus 
root rot (usually infects white fir) and amarillaria 
root disease that may touch roots with sequoia, 
especially in dense groves23,35,36. Dense stands 
of white fir also increase likelihood of carpenter 
ant infestations in sequoia23 and bark beetle 
impacts to non-sequoia trees in groves37

Structural failure from annosus root rot and amarillaria 
root disease infecting roots and carpenter ants building 
galleries in wood23,38,39. Some amount of seedling 
predation by camel crickets, two species of geometrid 
moths, nematodes, meadow mice, and gophers23

Human Recreational Use

Soil compaction52; loss of soil around tree 
roots40,52

Reduced regeneration4; potential for increased mortality 
of mature trees via pathogens4

Introduction of invasive plant species3 Reduced regeneration; alteration of fire regimes and 
nutrient cycling3

Potential Climate Change 
Impacts Potential Results Potential Impact to Sequoia

“Much Warmer/Much Drier” 
Scenario 

Earlier and more rapid snowmelt41; decrease 
in snow pack43; changes in sub/surface 
hydrology; increased soil evaporation rate in 
summer4

Sequoia experiences drought conditions during summer 
growing season42,43,44

Drought conditions during growing season4 Weakens/makes sequoia more susceptible to insect 
attack, disease, air pollution, etc.

Expanding ranges of sequoia pests and 
pathogens4 Increase mortality of sequoia

Increased fire probability at all elevations 
except foothills and alpine areas45,46; increased 
area burned47; increased frequency in SEKI/
YOSE48

Increase mortality of adult sequoia49,50,51

Shift in range following desirable temp/
precipitation patterns for SEGI Sequoia may move higher in elevation and northward

Shift in plant species composition4 Unknown impacts for sequoia

“Moderately Warmer/Similar 
Precip”  Scenario

Increased fire probability at almost all 
elevations except alpine areas46 Increase mortality of adult sequoia49,50,51

Vulnerabilities Explanation Potential Impact to Sequoia

Sensitivity to Moisture Levels

Although exact requirements unknown, 
sequoias require high soil moisture. 
Precipitation <68 cm may fail to maintain water 
available for uptake throughout the summer27

Regeneration failure and mortality of or weakened adult 
trees

Limits on Dispersal and 
Reproduction

Slow maturation: 20 yr until seed production, 
and 200 yr until max. seed production; limited 
seed dispersal: >400 m52,53 with wind; little 
assistance through animal vectors4; low seed 
germination success4

Sequoia may not be able to expand range as fast as 
environmental conditions may change

Narrow Environmental 
Growth Range

Sequoias constrained by areas with cool, wet 
winters, warm summers with high moisture 
availability during growing season, and 
frequent fire4,54,55 

Increased mortality of some groves if locations are 
no longer within desired environmental parameters; 
unknown if sequoia will be able to track parameter shifts 
across landscape

Decreased Genetic Diversity
Past contractions of sequoia population from 
climate changes may have decreased genetic 
diversity3

May decrease adaptive capabilities3

Synergistic Effects Already weakened sequoias may become more vulnerable to new stressors and new combinations of 
stressors from climate change
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