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As the rate and magnitude of climate change accelerate, under-
standing the consequences becomes increasingly important. Spe-
cies distribution models (SDMs) based on current ecological niche
constraints are used to project future species distributions. These
models contain assumptions that add to the uncertainty in model
projections stemming from the structure of the models, the algo-
rithms used to translate niche associations into distributional
probabilities, the quality and quantity of data, and mismatches
between the scales of modeling and data. We illustrate the appli-
cation of SDMs using two climate models and two distributional
algorithms, together with information on distributional shifts in
vegetation types, to project fine-scale future distributions of 60
California landbird species. Most species are projected to decrease
in distribution by 2070. Changes in total species richness vary over
the state, with large losses of species in some ‘‘hotspots’’ of
vulnerability. Differences in distributional shifts among species will
change species co-occurrences, creating spatial variation in simi-
larities between current and future assemblages. We use these
analyses to consider how assumptions can be addressed and
uncertainties reduced. SDMs can provide a useful way to incorpo-
rate future conditions into conservation and management prac-
tices and decisions, but the uncertainties of model projections must
be balanced with the risks of taking the wrong actions or the costs
of inaction. Doing this will require that the sources and magnitudes
of uncertainty are documented, and that conservationists and
resource managers be willing to act despite the uncertainties. The
alternative, of ignoring the future, is not an option.
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The world is changing rapidly, because of the cascading and
intertwined effects of human population growth, widespread

poverty, economic globalization, land-use change, and, looming
over it all, climate change. These changes are having profound
effects on biological diversity, effects that will only become more
dramatic and dire as the pace of environmental change quickens.
The challenges to conservation and environmental management
are immense.

Traditionally, conservation has focused on protecting individ-
ual species and their habitats. This focus derives from more than
a century of work describing the relationships between organ-
isms and features of the environment. Virtually all of this work
has been shaped by thinking about ecological niches. Niche
concepts and theory, in the form of ‘‘ecological niche models’’
or ‘‘bioclimatic envelope models’’ (1, 2), have become central in
efforts to understand how future climate change may have an
impact on species and their habitats. In this paper, after pro-
viding a brief perspective on ‘‘ecological niches,’’ we describe
how niche thinking and modeling have been used to project
changes in the distributions of species and consider several
assumptions and uncertainties. We illustrate the approach with
examples from our work on California birds and conclude by
assessing the usefulness of niche-based models for projecting
climate-change impacts on biodiversity and the implications for
conservation and management.

A Brief Perspective on Niches
The foundations for thinking about ecological niches were laid
by Joseph Grinnell and Charles Elton in the 1910s and 1920s.
Grinnell (3) thought of the niche as a subdivision of the habitat
containing the environmental conditions that enable individuals
of a species to survive and reproduce. These conditions deter-
mine where a species will occur—its distribution and abundance.
Elton’s (4) notion of niches, published a decade after Grinnell’s,
emphasized the functional role of a species in a community,
especially its position in food webs. The focus was less on where
a species could occur and more on its interactions with other
species in a community. Elton’s view was the foundation for the
later applications and elaborations of the niche concept by Lack
(5) and, especially, Hutchinson (6) and MacArthur (7). Niches
were defined by dimensions in resource utilization space rather
than the environmental dimensions that characterized Grinnell’s
niches. As niche theory developed it became ever more closely
associated with interspecific competition, to the extent that
during much of the 1960s and 1970s ‘‘niche’’ and ‘‘competition’’
were virtually interchangeable terms (8, 9). When simplistic
competition theory was challenged in the late 1970s and early
1980s (10, 11), niche theory also fell into the background, only
to be resurrected as its potential relevance to modeling how
species might respond to environmental change has become
apparent.

The enduring insight from Hutchinson’s work is in the dis-
tinction between the fundamental and realized niche. Simply put,
Hutchinson regarded the fundamental niche as the set of
resources—physical and biological—that a species could use that
would enable it to exist indefinitely. Thus, the fundamental niche
is determined by intrinsic properties of a species—how it re-
sponds to the environment—rather than by extrinsic properties
of the environment independent of the species. The realized
niche is the subset of the fundamental niche to which a species
is constrained by interactions with other species (competition,
predation) with which its fundamental niche overlaps.

The Use of Niche Thinking in Modeling Species’ Distributions in
Response to Climate Change
Species can respond to climate change by shifting distribution to
follow changing environments, by adapting to changing condi-
tions in place, or, if unable to do either, by remaining in isolated
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pockets of unchanged environment (‘‘refugia’’) or, more likely,
becoming extinct (12). Although some attention has been given
to the last three options (e.g., refs. 13–16), using ‘‘species
distribution models’’ (SDMs) to project how the distributions of
species may change under different scenarios of climate change
has become especially popular (2, 13–15). Ecological niche
models are the cornerstones of such distributional modeling.
Such models use information on the environmental features that
define the current ecological niche of a species in association
with the future distributions of those features derived from
climate-change models to project where the species’ niche
requirements may be satisfied in the future.

Ecological niche models generally use one of two approaches,
roughly corresponding to whether they adopt the fundamental or
the realized niche as the frame of reference (2, 16, 17). The first
approach is mechanistic, using information on the intrinsic
properties of species that determine their sensitivity to physical
features of the environment—their physiology, life-history, be-
havioral or genetic plasticity—to map current or future locations
that fall within the tolerance limits of a species (e.g., refs. 18 and
19). The second approach is correlative: environmental variables
characterizing places where a species does (or does not) occur
are used to develop correlative models that can then be extrap-
olated to project future occurrences in places where the corre-
lated environmental features are projected to be present. The
emphasis is on extrinsic factors determining the distribution of
a species—where it is, rather than where it could be. In recent
years, the majority of niche modeling has been correlative,
particularly when more than one species is involved (but see ref.
20). For that reason, and because the necessary mechanistic
information is lacking for many of the species we consider,
correlative models are our focus in this paper.

Despite the recent popularity of SDMs to project the potential
consequences of climate change, enthusiasm for their use is not
ubiquitous (21, 22). Like any models, SDMs rely on underlying
assumptions and incorporate uncertainties (23). Understanding
these assumptions and uncertainties is essential if the results of
SDMs are to be used to inform conservation and management.

Assumptions
Niche-based species-distribution models can produce high-
resolution maps showing how the probabilities of species occur-
rences are likely to shift with climate change (e.g., Figs. 1-5
below). In topographically and environmentally diverse regions,
these maps contain a wealth of beguiling detail and may portend
a future quite different from the present. But how credible are
the projections? Should the modeling results be used to guide
land acquisitions for conservation, management of wildlife
refuges, or other conservation or management activities, or are
they only illusions of possible futures, interesting but not to be
trusted for making decisions?

The answer, of course, lies somewhere between these ex-
tremes. To see where (and why), we must evaluate the assump-
tions underlying the approach.

Correlations. Correlative niche models are based on analyses that
relate the occurrence of a species in places to features of those
places. Using such models to project future distributions assumes
that the variables included in the models do in fact reflect the
niche requirements of a species. One can never measure all of the
factors that determine a species’ niche, and the possibility that
unmeasured niche dimensions may account for the observed
distribution has plagued niche analyses for decades and gener-
ated considerable debate (8). Even ‘‘good’’ models may fail to
provide accurate projections when extended to other places or
times (24).

Equilibrium and Habitat Saturation. Using current environmental
correlates of a species’ distribution to project its future occur-
rence also assumes that the current distribution is in equilibri-
um—suitable habitat is fully occupied or ‘‘saturated’’ (17, 25).
Suitable places may be unoccupied, however, if recent distur-
bances have eradicated a species from an area [as visualized in
metapopulation theory (26)], if a species is expanding into areas
that have only recently become available, or if regional popu-
lation density is inadequate to support colonization of suitable
areas. On the other hand, time lags associated with longevity of
individuals established under previous conditions [‘‘legacy’’ ef-
fects in plant distributions (27)] or with breeding-area philopatry
in birds may result in the occurrence of individuals in areas that
no longer fall within their environmental niche space. Thus,
ecological niche models may be prone to both omission errors
(leaving out of the niche space information from places that
could be occupied) and commission errors (including in the
niche space places that cannot sustain the species) (28).

Dispersal and Landscapes. The assumption that locations within
the environmental niche space of a species will be occupied
requires that individuals will be able to disperse to suitable
locations (16, 28). If environmental conditions shift more
rapidly than individuals can disperse, however, the species may
be relegated to persisting only in isolated habitat refugia that
meet their niche requirements (25). The prospect that many
species may not be able to keep up with the speed of movement
of suitable environments under future climate change has
fostered discussions of ‘‘assisted migration’’ as a conservation
strategy (29).

The ability of individuals to disperse to suitable places is not
solely a function of their inherent dispersal capacity. In many
cases the landscape through which species must move to reach
suitable places has been increasingly fragmented by human
actions. This fragmentation breaks habitat connectivity, imposes
barriers to dispersal, and creates a landscape mosaic of suitable,
less suitable, and unsuitable habitat patches. The effects of
landscape structure and connectivity on the future distributions
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Fig. 1. Frequency distribution of species showing projected future change in
mean probability of occurrence across all California 800-m pixels based on two
distribution model algorithms (GAM and Maxent) and two climate models
(GFDL CM2.1, Scenario A2, 2038–2070; and NCAR CCSM 3.0, Scenario A2,
2038–2069): blue, GFDL/GAM; purple, CCSM/GAM; green, GFDL/Maxent; red,
CCSM/Maxent.
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of species may become increasingly important as land-use
change accelerates in many parts of the world. Indeed, some
scientists have argued that the effects of land-use change on
species distributions and species loss over the near future may
exceed those of climate change (30–32).

Biotic Interactions. Most niche models implicitly assume that
biotic communities are Gleasonian (33), each species responding
independently to the environmental factors that determine its niche
space, and thus its habitat occupancy and distribution. Thus, species
interactions are generally not included in niche models (ref. 34, but
see refs. 35 and 36), even though the effects of biotic interactions
may sometimes supersede those of climate (37).

It is not hard to see why. Many species may co-occur in an area,
creating the setting for a bewildering array of interactions with
cascading direct and indirect effects. Documenting these inter-
actions, even for a subset of species, is an overwhelming chal-
lenge, especially as the nature of the interactions and their effects
on any one species may change from place to place (or time to
time) as other species enter or leave an assemblage or their
abundances change.

Adaptation and Evolution. Ecological niche models also assume
niche conservatism (38), the notion that the niche envelope is a
fixed and immutable characteristic of a species, unchanging over
space and time. This assumption justifies using correlative niche
models for a species from some locations to extrapolate its
distribution to other locations that have not been surveyed. We
know, of course, that local populations may be differentially
adapted to local conditions (39). The assumption that the niche
space of a species is stable over time is more germane to the use
of SDMs to project responses to climate change. It is often
argued that the rate of current and future environmental change
exceeds the capacity of most plant and animal species to adjust
evolutionarily (40). This may be true for long-lived species with
limited dispersal, but there is mounting evidence that some
short-generation species are capable of rapid evolutionary
change (41). Rapid behavioral adjustments to changing envi-
ronmental conditions may also be commonplace. The observa-
tion that some bird species are advancing the timing of spring
migration or breeding activity in association with warmer tem-
peratures (42) indicates a capacity to adjust to changing condi-
tions within localities without shifting distributions. It is not
obvious, however, that such behavioral adjustments represent
viable adaptations to climate change, especially if, for example,
the breeding phenology of the birds no longer matches the
flushes of prey abundance required to feed offspring.

Uncertainties
The future is by definition uncertain. Using models to project
probable futures based on current information and understand-
ing entails additional uncertainties. Some of these uncertainties
are due to the assumptions underlying a modeling approach; to
the extent that these assumptions are violated, uncertainty in the
model projections is increased. But there are other sources of
uncertainty as well (23, 43, 44).

Climate Model Uncertainties. Projections of shifts in species’ dis-
tributions with changes in climate are derived by coupling niche
models with projections based on general circulation models
(GCMs) that describe potential future conditions at a coarse
scale of resolution (typically 156–313 km). Because different
GCMs rely on different parameters and incorporate different
functions to portray the dynamics of atmospheric circulation,
ocean effects, or feedbacks between the land surface and the
atmosphere, they may project different consequences for the
same level of greenhouse gas emissions. Projections for Califor-
nia derived by using the National Center for Atmospheric

Research (NCAR) PCM model with the A1fi emissions scenario
(45), for example, suggest a temperature rise of 3.8 °C by the end
of the century from the 1990–1999 baseline, whereas the Hadley
CM3 model projects a temperature rise of 5.8 °C for the same
emissions scenario (46).

The resolution of climate-model projections is increased by
downscaling from GCMs to a regional or local scale. Statistical
downscaling involves interpolations from empirical relationships
among variables by using weather-station or GCM data, taking
into account topography and local climate anomalies (47).
Dynamical downscaling uses regional climate models (RCMs)
that are nested within GCMs to simulate climate patterns at a
finer scale than GCMs (e.g., 10–50 km) and that include a more
detailed representation of land cover (48–50). Although statis-
tical downscaling is computationally less demanding than dy-
namical downscaling, it is more dependent on the availability of
adequate weather data and assumes that past relationships
between local weather and regional climate will hold into the
future. In contrast, dynamical downscaling can simulate nonlin-
ear climate processes that are likely to change in the future.
Although both approaches aim to incorporate the effects of
topography, land cover, and climate anomalies, they are none-
theless constrained by the coarse-scale output of the GCMs that
drive them (51).

Distribution Model Algorithm Uncertainties. Several algorithms
have been developed to model the distributions of species based
on species occurrence data. More traditional statistical methods
such as generalized linear models (GLMs) or generalized addi-
tive models (GAMs; ref. 52) require species absence (or pseudo-
absence) as well as presence information, as do artificial neural
networks (53) and genetic algorithms (GARP; ref. 54). Other
algorithms have been developed for presence-only data, includ-
ing simple envelope models such as DOMAIN (55) and BIO-
CLIM (56), as well as more sophisticated machine-learning
algorithms such as Maxent (57). Comparative studies have found
a range of performance across algorithms and no single method
emerges as ‘‘best’’ (58–60). For example, GARP generally has
high model sensitivity but also a high rate of false positives (59,
60), which may result in predictions that are spatially over-
inclusive, whereas DOMAIN (20) and tree-based approaches
(59) tend to have high model specificity but also a high false-
negative rate, therefore tending to underpredict. Model valida-
tions on independent datasets have suggested that some of the
newer machine-learning (e.g., Maxent) and tree-based (e.g.,
boosted regression trees) algorithms have the best overall per-
formance, in terms of both sensitivity and specificity (58–61).

Data Uncertainties. Any modeling exercise is sensitive to the
quality and quantity of the underlying data, and SDMs are no
exception. For climate data, the spatial and temporal resolution
(e.g., spatial distribution and duration of weather records) affect
the downscaling of GCMs, and differences in the broad climatic
variables used to drive GCMs can result in different projections,
increasing model uncertainty. The reliability of occurrence
records of species used to derive correlational niche models
depends on the comprehensiveness of survey coverage, potential
biases in recording presence or absence, observer skill at iden-
tification, and a host of other factors (62). Small sample size or
inadequate spatial coverage decreases the statistical confidence
of correlations underlying niche models and increases the un-
certainty of extrapolating distributions to broader areas (60).
Additionally, some surveys collect only presence data, whereas
other surveys also document absences. Incorporation of absence
data may strengthen a niche model (because where a species is
not can reveal as much about its niche as where it is), but
‘‘absence’’ can mean a true absence or a failure to record a
species that is actually present (‘‘false absence’’).
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Scale Uncertainties. The choice of the spatial scale to be used in
modeling depends on the scales of the available environmental
data and the current species distributional data. At a very fine
resolution (‘‘grain’’), distributions may not match environmental
factors closely because behavioral interactions (territoriality,
social attraction) may override habitat selection, whereas at the
coarse resolution of a broad geographic range only the most
general environmental relations may emerge in correlational
analyses (26). SDMs conducted using large grid-cell sizes
(coarser grain) may substantially overestimate potentially suit-
able areas in relation to those predicted by using a finer grid-cell
size (63, 64), particularly if the data used to derive the initial
distribution are sparse.

Mismatches in scale between the grain size of climate-model
outputs, other environmental data, and the distributional data
used as inputs to SDMs can amplify the uncertainties inherent
in each of these data sets (65, 66). The effects of these scale-
related uncertainties will differ depending on the scale of
analysis. Some uncertainties may be averaged out if the grain size
of predicted distributions is large (e.g., one is interested only in
the overall geographic range of a species). On the other hand, the
closer one gets to modeling fine-scale features, the more likely
one may be able to capture the factors that determine the
realized niche.

Distributional Shifts of California Breeding Landbirds
Just because we are able to outline the assumptions and uncer-
tainties in SDMs does not ensure that our modeling is immune
to their effects. To illustrate the sorts of analyses that can be
conducted by using niche modeling and SDMs and to assess how
some of the assumptions and uncertainties can be addressed, we
use our ongoing studies of shifts in the distributions of breeding
landbirds with future climate change for California. We focused
on California because it is a large, environmentally diverse state
that may be especially vulnerable to the effects of climate change
(67, 68) and because high-quality data on the distribution and
occurrence of vegetation and bird species are available.

Using a correlational approach, we generated niche models
for 60 focal bird species (see Table S1) representative of major
habitat types in California (69). We used presence and absence
data derived from point-count surveys at 16,742 locations in
California. By restricting the bird occurrence information to data
derived from point-count surveys connected to high-accuracy
locational information, we increased the likelihood that our
models captured the environmental space actually occupied by
a species. We used two distribution modeling algorithms, max-
imum entropy [Maxent 3.2.1 (70)] and generalized additive
models [GAM (52)], to project future bird distributions based on
modeled associations with climate and vegetation (71) (meth-
odological details are provided in SI Text). Current climate data
were based on 30-year (1971–2000) monthly climate normals
interpolated at an 800-m grid resolution by the PRISM Group (72).
We reduced 19 standard bioclimatic variables (www.worldclim.org/
bioclim.htm) to a set of eight variables used in the final models (see
Table S2). To improve the capacity of the SDMs to project changes
in habitat relevant to birds, we included vegetation distribution,
modeled for 12 vegetation classes (see Table S3) based on observed
relations with climate, solar radiation, soil, and topography.

Because of California’s diverse climate and topography, we
based our future distribution projections on newly available
30-km projections from a regional climate model, RegCM3 (73).
Given the limited availability of GCM outputs at the appropriate
temporal resolution, combined with the computational intensity
of RCM runs, we had only two comparable sets of RCM
projections available to us. These RCM runs were driven by
output from two GCMs using the A2 emission scenario from the
Intergovernmental Panel on Climate Change (IPCC) (47): (i)
CCSM: the NCAR Community Climate System Model (CCSM

3.0) (74) and (ii) GFDL: the Geophysical Fluid Dynamics
Laboratory (GFDL) Climate Model (CM2.1) (75). Both CCSM
and GFDL have good mean annual performance for temperature
and precipitation (74, 75). Resulting climate projections do not
represent a comprehensive range of model-projected future cli-
mates, but rather two plausible outcomes for California. Although
the A2 emission scenario is considered a high-emission scenario by
the IPCC (45), recent projections suggest that this is likely to be a
conservative estimate of future emissions (76).

Most of the 60 species were projected to decrease in distri-
bution within California by 2070 (Fig. 1). The four combinations
of model algorithms and climate projections produced generally
similar frequency distributions of mean species’ increases and
decreases, although Maxent models projected somewhat greater
losses than GAMs and GFDL-based projections were slightly
more extreme than CCSM-based projections. The mean percent
change projected for conifer-, riparian-, and grassland-
associated species was negative across all four combinations of
model algorithms and climate projections, whereas results for
scrub- and oak woodland-associated species were more variable
across models (Table 1). For all of the habitat types except
grassland, however, there was a wide variety of projected dis-
tributional responses, both positive and negative, among species
within the habitat type.

Even if the average probability of occurrence of a species
across the state does not change with climate change, the species
may still undergo a distributional shift. Geographic shifts across
all species were summarized by summing pixel-level probabilities
of occurrence to obtain an index of species richness at each pixel.
Fig. 2 shows that the impacts of climate change on bird distri-
butions are likely to differ substantially in different parts of the
state, with the greatest projected increases in avian species
richness along the north coast and mountain areas and greatest
projected decreases in the northern Central Valley and desert

Table 1. Mean change (percentage of pixels currently occupied)
for bird species (n) characteristic of five vegetation types in
California derived from four modeling approaches

Change, % of pixels

Vegetation
GFDL/
GAM

CCSM/
GAM

GFDL/
Maxent

CCSM/
Maxent

Conifer Mean �30 �31 �35 �43
(n � 21) SD 42 31 33 23

Min �80 �96 �81 �91
Max 106 43 71 26

Oak Mean 6 �1 7 �6
(n � 19) SD 53 36 56 18

Min �71 �62 �51 �54
Max 169 85 198 35

Grassland Mean �63 �20 �63 �19
(n � 3) SD 28 12 21 6

Min �89 �34 �76 �23
Max �33 �13 �39 �12

Riparian Mean �32 �28 �40 �23
(n � 7) SD 34 21 36 17

Min �70 �52 �78 �42
Max 29 2 28 3

Scrub Mean 15 �2 �13 �11
(n � 19) SD 71 41 48 26

Min �94 �65 �80 �62
Max 202 85 113 35

The variance measures [standard deviation, SD, and range (minimum and
maximum percentage change)] indicate the degree to which the species in the
vegetation type differed from one another in overall change, and thus the
magnitude of community turnover for places within that vegetation type.

19732 � www.pnas.org�cgi�doi�10.1073�pnas.0901639106 Wiens et al.

http://www.pnas.org/cgi/data/0901639106/DCSupplemental/Supplemental_PDF#nameddest=ST1
http://www.pnas.org/cgi/data/0901639106/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0901639106/DCSupplemental/Supplemental_PDF#nameddest=ST2
http://www.pnas.org/cgi/data/0901639106/DCSupplemental/Supplemental_PDF#nameddest=ST3


portions of the state. This demonstrates some of the anticipated
coastward and upslope shifts in response to a warming climate,
but also identifies more localized ‘‘hotspots’’ of change. These
areas may warrant more detailed model analyses and targeted
field-based observational or experimental studies to inform
conservation or management actions.

Changes in species richness in an area say nothing about how
the species composition of the area may change. The responses
of species to climate change were modeled independently of one
another in accordance with species-specific niche models. As a
result, species that currently do not co-occur in parts of their
distribution may be found together in those areas in the future,
or vice versa. For example, the distributions of two scrub-habitat
species, wrentit (Chamaea fasciata) and rufous-crowned sparrow
(Aimophila ruficeps) currently show only limited overlap in
central California (Fig. 3A). Model analyses project that these
species will be found together far more frequently in the future as
the distributions of sparrows shift northward and wrentits shift
toward coastal regions and upslope in the Sierra foothills (Fig. 3B).

To evaluate the potential for overall species turnover, we
calculated a Jaccard index of community similarity between
current and future species composition at the pixel level (13, 77,
78). This index is standardized with respect to species richness
and therefore provides a relative measure of species turnover.
Across models and climate projections, areas with the lowest
community similarity (greatest projected change in community
composition) over time tended to be in areas of rugged topog-
raphy with steep gradients of environmental change (Fig. 4),
although this was not always the case. This pattern suggests that
shifts in distribution are not easily explained by environmental
factors alone, but may be due to individualistic responses of
species to climate change (e.g., Fig. 3). As co-occurring species
respond to climate change in different ways, current assemblages
of species will be reshuffled (79), creating new assemblages that
may have no contemporary counterpart (40, 71).

Effects of Assumptions and Uncertainties
Assumptions. It is challenging to construct correlational niche
models that include a sufficient number of relevant variables,
while not including so many variables that the models are
overfitted. It is also difficult to construct fine-scale projections,
because environmental data at these finer scales are often
unavailable. We attempted to make our model as fine-scale as
possible, in several ways. We used the most fine-scale climate
model projections available for California (30-km) and further
downscaled them based on the best available current climate
interpolations (PRISM; see SI Text) so that the resolution would

be most suitable for modeling habitat-level distributional re-
sponses. We included vegetation distribution as well as climatic
variables in our models to improve the capacity to project habitat
changes relevant to the bird species, and we modeled future
vegetation distribution by incorporating information on soil and

Fig. 2. Modeled current and future distributions of bird species richness in California for 60 focal species (A and B) and net change in species richness (C). Values
are means for individual pixels derived from four climate scenario/distribution model algorithm combinations.

Fig. 3. Modeled current and future distributions of wrentit (Chamaea
fasciata) and rufous-crowned sparrow (Aimophila ruficeps) in the central
portion of California. (A) Modeled current distributions (GAM), showing
limited overlap between the species except at higher elevations in coastal
mountains toward the south. (B) Projected future distributions (GDFL/GAM),
showing increased co-occurrence of the species in coastal mountains, appear-
ance of sparrows throughout the lower elevations of the Sierra Nevada
mountains, and a shift in wrentits toward higher elevations.
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topography as well as climate. Based on the frequent finding that
birds respond more to the structure and form of vegetation than to
floristic composition (80), we used general vegetation types rather
than plant species to represent bird habitats. The mobility of birds
also reduces the potential effects of dispersal limitations and
increases the likelihood that suitable habitat will be occupied.

We were unable to address several other assumptions of niche
models in our analyses. For example, we lacked information to
consider demographic factors for all but a few species, and we
had no data to include the potential effects of landscape
structure on dispersal or metapopulation dynamics. In the
absence of any information on adaptive or behavioral responses
to environmental changes, we must also assume evolutionary
stasis for the species we considered. Because we lacked any direct
information to evaluate the effects of biotic interactions on the
present or future distributions of species, we considered the
species as independent entities. Addressing these issues should
be a priority for next-generation SDMs.

Uncertainties. One way to reduce the uncertainty stemming from
the differing projections of GCMs is to use several models in the
analysis and then average the results—so-called ensemble mod-
els or consensus methods (23, 43, 81). This approach presumes
that the different models are internally sound and incorporate
accurate data; combining information from several uncertain or
inadequate models may obscure underlying uncertainties that
are actually magnified in the averaging process. Because of the
limited availability of RCM projections, we did not employ a
consensus approach (which often involves a dozen models or
more) in the strict sense, but we did use two different RCM runs
in association with two distributional algorithms to assess the
variation in projections among models (Figs. 1 and 4). At a fine
scale of spatial resolution there were clear differences among
models (with some consistent differences between GAM and
Maxent results), although the ranges of overall changes for the
species associated with a given habitat type were broadly con-
sistent among models (Table 1).

To reduce the uncertainty associated with the data on which
the species-distribution projections are based, we used records
from multiyear point-count surveys. These have the advantage of
greater reliability in recording occurrence (and absence), but the
disadvantage that such surveys are sparse from some areas
(particularly the desert areas in the southeast). We also restricted
our attention to reasonably widespread, common, and easily
detected species, for which observations at point-count locations

within the species’ range were relatively frequent. Analysis of
elusive species or rare or endangered species would require the use
of less systematic observations, which contain greater uncertainty.

What is really needed to assess overall uncertainty of SDM
projections is an index that incorporates the various sources of
uncertainty. As a first approximation, we have calculated the
coefficient of variation of model projections for future bird
species richness among the four modeling approaches for each
pixel in our analysis (Fig. 5). This analysis highlights areas of
greater uncertainty, which do not necessarily coincide with areas
of greatest change in species richness or community composi-
tion. In our example, this uncertainty represents a combination
of model and climate-projection uncertainties, which appear to
be fairly similar in magnitude based on visual inspection of
individual maps. Overall, the model-related uncertainty appears

Fig. 4. Pixel-level (800-m) patterns of similarity in California bird species assemblages between current and projected future modeled distributions for 60 focal
species. Jaccard similarity index values were based on modeled species distributions using NCAR CCSM3.0, Scenario A2, 2038–2069, generalized additive models
(GAM) (A), GFDL CM2.1, Scenario A2, 2038–2070, GAM (B), NCAR CCSM3.0, Scenario A2, 2038–2069, maximum entropy models (Maxent) (C), and GFDL CM2.1,
Scenario A2, 2038–2070, Maxent (D).

Fig. 5. Geographic pattern in the uncertainty of model projections of future
bird species richness in California, expressed as the coefficient of variation of
projected future species richness at the 800-m pixel level among the four
distribution model/climate scenario combinations (i.e., n � 4).
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to be relatively low in most parts of the state, particularly in
coastal areas and the lower elevations of the Sierra Nevada.
Uncertainty is greater in a few scattered areas within the most
arid parts of southern California. A comparison of the areas of
greatest projected species loss in Fig. 2 with the locations of
higher coefficients of variations shown in Fig. 5 indicates that the
hotspots in the northwestern mountains and the middle Central
Valley of California may be more certain to occur than those in
some areas of the southeastern deserts.

Conclusions
The most recent IPCC report (45) leaves little doubt that the
changes in global climate that have already been set in motion
will have major and accelerating effects on environmental
systems, creating novel conditions that go well beyond our past
experience. ‘‘Business as usual’’ will be an inadequate formula
for future success in conservation and resource management.
But to change how we approach conservation and management,
we need some way of anticipating future environmental changes,
of assessing which future pathways are most likely. Models are
the most objective way to do this, and correlative SDMs are
currently the most effective way of translating the projections of
climate-change models into ecological consequences.

But models inevitably carry with them the baggage of simpli-
fying assumptions and uncertainties. ‘‘Abandon hope all ye who
enter here’’ could easily be the mantra of anyone undertaking
ecological niche modeling, especially when using it to project
future species distributions. Not using models to peer into the
future, however, is not really an option. One could assume that
the future will be like the present and that a business-as-usual
approach will be sufficient, despite mounting evidence that the
future will in fact be different. Or one could simply guess at what
the future may hold and hope to be right.

In one sense, this is what models are: educated guesses about
the future. By knowing the underlying assumptions, evaluating
their potential effects, and incorporating additional detail into
the models, we can narrow the guesses to define the more
probable futures. Future efforts to incorporate demography,
dispersal, landscape effects, biotic interactions, and the mecha-
nistic underpinnings of species’ responses to biophysical factors
will enhance the biological realism of SDMs. Even in their
present form, however, the capacity of SDMs to use current
information in conjunction with the projections of climate
models can strengthen decision-making by conservationists and
resource managers. Our projections of species richness changes
(Fig. 2), for example, highlight areas that may be especially
vulnerable to a loss of species and other areas that may expe-
rience a gain in species richness. Consideration of projections of
areas that may contain similar species assemblages in the future
(e.g., Fig. 4) can help to identify places in which similar man-
agement approaches may be effective. Such knowledge may be
useful in determining where conservation investments should be
made or where management or restoration efforts may yield the
greatest benefits.

All of this raises the broader issue of how to deal with
uncertainty in conservation and management. Decision-makers,
managers, and practitioners like certainty, and they expect
science to provide it. They want to be sure that the actions they
take will have the desired effects. Yet they are seemingly
confronted with increased uncertainty at every turn. The systems
they aim to manage are complex and riddled with feedbacks,
indirect effects, and nonlinearities, all of which erode certainty.
The imperative to manage for future as well as present condi-
tions adds to the challenge. Not only is the future always
uncertain, but the approaches and tools we use to project the
future are saddled with additional uncertainties.

There are no easy solutions to the uncertainty challenge, but
we see three ways that may help conservationists and managers

deal with it. First, efforts should be made to develop ways of
expressing quantitatively the level of uncertainty that is associ-
ated with the projections of SDMs. Is the definition of future
hotspots of vulnerability to species loss depicted in Fig. 2, for
example, certain enough to provide a foundation for targeting
conservation investments? A spatially referenced analysis of the
uncertainties accompanying these projections, such as the coef-
ficient of variation (Fig. 5), can help to establish a context for
interpreting and acting on such information. The coefficient of
variation is only an initial and coarse measure of uncertainty,
however; better approaches would help managers determine
how much confidence to place in model projections.

Second, both managers and scientists should recognize that
achieving the level of certainty usually deemed acceptable in
scientific circles (e.g., P � 0.05) is not attainable in many current
management situations, and is even less likely to be relevant to
future projections. The situations that confront managers and
conservationists are not given to analysis by tidy experimental
designs that will yield statistical significance, and often there is too
little time to conduct a rigorous study before decisions must be
made. Aiming for a high level of certainty in such situations is
impractical. Instead, managers must be satisfied with a level of
certainty that is ‘‘good enough’’ to move forward, something
between statistical confidence and having an unacceptable likeli-
hood of making mistakes because of incomplete knowledge (82).

Third, the good-enough level of certainty depends on
tradeoffs. If the costs of being wrong are large (e.g., declaring a
species extinct when it still persists in undisclosed locations),
then good enough requires a greater level of certainty than if the
costs are small or the actions can be easily corrected. There may
also be costs of taking no action when conditions demand a
response (e.g., critical habitat for a species is rapidly disappear-
ing). This will require some understanding not only of the
uncertainty associated with projections or with actions and their
outcomes, but also of the risks, costs, and benefits of alternative
actions. This is the domain of ecological risk assessment (83, 84);
there may be real value in integrating the formalisms of risk
assessment with the projections of SDMs. In the end, determin-
ing how well conservation or management actions are working
and whether the uncertainties include unforeseen factors that
must be incorporated into the management equation requires
targeted monitoring. In an increasingly uncertain world, imple-
menting real adaptive management (85) will be essential.

So where does this leave us? Yes, SDMs currently contain
many assumptions and uncertainties. There are ways of address-
ing some of the assumptions and reducing the uncertainties,
however, and knowing what remains may enable us to focus our
efforts in advancing niche-based modeling. Viewed at appropri-
ate scales, the output of current SDMs can provide glimpses of
probable futures that can be useful in conservation and resource
management. The alternative is to ignore the future, which is
really not an option.
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