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Abstract Probabilistic event attribution (PEA) is an important tool for assessing the contri-
bution of climate change to extreme weather events. Here, PEA is applied to explore the
climate attribution of recent extreme heat events in California’s Central Valley. Heat waves
have become progressively more severe due to increasing relative humidity and nighttime
temperatures, which increases the health risks of exposed communities, especially Latino
farmworkers and other socioeconomically disadvantaged communities. Using a
superensemble of simulations with the Hadley Centre Regional Model (HadRM3P), we find
that (1) simulations of the hottest summer days during the 2000s were twice as likely to occur
using observed levels of greenhouse gases than in a counterfactual world without major human
activities, suggesting a strong relationship between heat extremes and the increase in human
emissions of greenhouse gases, (2) detrimental impacts of heat on public health-relevant
variables, such as the number of days above 40 °C, can be quantified and attributed to human
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Climatic Change

activities using PEA, and (3) PEA can serve as a tool for addressing climate justice concerns of
populations within developed nations who are disproportionately exposed to climate risks.

1 Introduction

Recent advances in probabilistic event attribution (PEA) have allowed for enhanced explora-
tion of the role of human activities in meteorological extremes (Otto et al. 2013; Pall et al.
2011; Rupp et al. 2015). PEA can be applied within the context of addressing inequities in the
human costs of climate change given its ability to provide fractional attribution of an event
(James et al. 2014; Thompson and Otto 2015). For example, recent attribution research on
record-breaking heat extremes in Russia (Otto et al. 2013), southeast Europe (Sippel and Otto
2014) and Texas (Rupp et al. 2015) focus on regions and populations that were ill-prepared for
these extremes, experiencing both heat-health impacts and losses in agricultural productivity.

Thompson and Otto (2015) argue that the ability to attribute extreme weather events
to climate change through PEA is germane to climate policy discussions over the relative
responsibilities of nations for climate loss and damage. The impacts of climate change
are also distributed inequitably within nations, including developed nations. For instance,
heat extremes in the United States disproportionately affect specific populations, includ-
ing those in urban areas (Fischer et al. 2012), areas lacking air conditioning (O’Neill
et al. 2005), lower economic background (Hajat and Kosatky 2010), elderly, and specific
ethnic groups (White-Newsome et al. 2009). These factors need to be taken into
consideration when exploring the human impact of heat extremes in order to inform
policy-makers and affected communities where a case can be made for lack of prepara-
tion and adaptation. Currently, a large fraction of the population in the United States is
inadequately prepared for extreme heat (White-Newsome et al. 2014).

In California’s Central Valley, heat waves have become progressively more severe in recent
decades due to higher humidity and warmer nighttime temperatures (Gershunov et al. 2009).
For example, a particularly severe heat wave in 2006 was linked with increases in emergency
department visits and hospitalizations (Knowlton et al. 2009) and at least 146 deaths
(California Department of Health Services 2007). Among the most affected was the Latino
community in agricultural regions (Knowlton et al. 2009), who face relatively high exposure to
extreme heat due to extensive outdoor work. In fact, the Latino population continues to be at
disproportionately high climate risk across the United States, supporting the relatively wide
sentiment within the Latino community that climate change is a serious problem that should be
addressed (Leiserowitz and Akerlof 2010).

Allen (2003) introduced the notion of utilizing fractional attribution and posed an interest-
ing question: should society hold certain non-state entities, such as major industrial emitters or
producers of carbon, accountable for losses and damages incurred by climate change? James
et al. (2014) argued that PEA could be relevant to the questions of international responsibility
for loss and damage associated with extreme events affecting developing nations. Here it is
argued that PEA can also be applied to address the climate justice concerns of populations
within developed nations who are disproportionately exposed to climate risks. Thus, this study
focuses on variables relevant to the public health impacts of extreme heat in the California
Central Valley to highlight the applicability of PEA to inform decision makers and affected
communities on key questions: are these events, and their associated impacts, increasing in
intensity and is climate change a major driver?
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Variables examined include the total number of days in a month with maximum temper-
atures exceeding 40.6 °C (Luber and McGeehin 2008), heat stress due to high relative
humidity (Knowlton et al. 2009) and nighttime temperatures (Kalkstein et al. 1996; Greene
and Kalkstein 1996). Heat stress has been found to be especially important in terms of societal
impact in recent studies (Mastrangelo et al. 2006) and has been applied within the context of
PEA (Sippel and Otto 2014).

Climate modeling with very large ensembles provides the framework for PEA in the
present work. A large number of simulations allows for a high number of samples in the tails
of the distributions of the variables of interest, thus facilitating the robust determination of
spatio-temporal changes in rare events (Mote et al. 2015).

2 Material and methods

This study analyzes June, July and August (JJA) daily maximum and minimum temperature
observations from 39 U.S. Historical Climatology Network (USHCN) stations Version 2
(Menne et al. 2009) within the states of California and Nevada since the year 1900. A total
of 30 stations have weather records in the Central Valley since at least 1961 (Kunkel et al.
2008).

For public health indicators, a temperature of 40.6 °C provides an appropriate measure
since it is a threshold that defines heat stroke and may contribute to mortality if the core
temperature of the individual is measured at or above this level (Luber and McGeehin 2008).
Also, as a proxy for heat stress due to high relative humidity, this study employs a simplified
wet-bulb globe temperature (WBGT). This is explored in the supplementary materials.

In order to quantify the climate attribution of extreme heat events in the model analysis, this
study uses the fraction of attributable risk (FAR), defined as the fraction of the current risk that
is attributable to past greenhouse gas (GHG) emissions (Allen 2003), and is computed as
follows:

FAR = 1-P0 /Pl (1)

Such that P1 is the probability of a climatic event occurring in the presence of anthropo-
genic forcing of the climate system, and PO is the probability of it occurring in the absence of
anthropogenic forcing.

2.1 Model analysis

The capability to generate a very large number of simulations is provided by the weather@home
experiment, a public volunteer-distributed computing project for simulating regional climate
(Allen 1999; Massey et al. 2014). Weather@home uses the Hadley Centre Atmospheric General
Circulation Model 3P (HadAM3P; 1.875° x 1.25°, 19 levels; Jones et al. 2004) atmosphere-only
global climate model (AGCM) and a regional climate model (RCM) variant, HadRM3P, set at a
25-km horizontal resolution, nested within the AGCM (Mote et al. 2015).

Three sets of simulations were carried out to address (a) the decadal differences in
temperature found in the observations, and (b) to explore whether climate change is a major
driver of the increase in intensity of heat waves during the 2000s. The influence of year-to-year
SST-driven internal variability on the region’s summer temperatures is addressed when
comparing an all-forcings scenario in which SSTs, sea ice fractions, and forcings are set to
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observed values against a scenario devoid of much of the anthropogenic GHG emissions
(“Natural” forcings). This is because the Natural simulation SST anomalies still maintain much
of the same spatial patterns and spatial gradients as in the all-forcimgs scenario, even though
each set of Natural experiment SSTs have had an anthropogenic warming pattern removed
from them.

The simulations carried out in this experiment varied by their prescribed boundary condi-
tions [i.e., sea surface temperature (SST) and sea ice fraction] and their anthropogenic and
natural forcings. Forcings include well-mixed greenhouse gases, volcanic and solar forcing, as
well as aerosols and land use.

In the first set of simulations, which we call the “All forcings 1” (hereafter AF1) scenario,
SSTs, sea ice fractions, and forcings were set to observed values during the period 1961-2010.
SST and sea ice were derived from the monthly HadISST (Rayner et al. 2003) gridded
observational dataset. An ensemble of 450 simulations per year was generated by varying
the initial conditions in each year for each simulated year (details on how the initial conditions
were generated is given Massey et al. 2014).

In the second set of simulations, the “All forcings 2” (AF2) scenario, SSTs, sea ice
fractions, and forcings were also set to observed values, but the period was limited to 2001—
2010. SST and sea ice were derived from the 5-day OSTIA (Donlon et al. 2011) gridded
observational datasets. An ensemble of 350 simulations per year was generated by varying the
initial conditions of each year. This set of simulations was created to provide higher temporal
resolution (daily) in the output and to take advantage of higher temporal resolution found in
OSTIA.

The third set of simulations — the “Natural” scenario — mimicked the second scenario,
except that SST, sea ice fraction, and anthropogenic forcings (anthropogenic GHGs and
aerosols) were set to values representative of the year 1900. “Natural” SSTs were based on
patterns of SST changes from 4 Coupled Model Intercomparison Project Phase 5 (CMIP5)
GCMs: HadGEM2-ES, CNRM-CMS5, GFDL-ESM2M and GISS-E2-H. Filtered changes in
SSTs from each of these GCMs between the CMIPS historicalNat (natural forcings only)
experiment and the CMIP5 historical (natural and anthropogenic forcings) experiment were
added to the OSTIA SSTs using the same approach as Schaller et al. (2014). For sea ice
fraction, we used the years in the OSTIA record (1985-2010) with the largest mean annual
Arctic and Antarctic sea ice extents: 1987 and 2008, respectively (Schaller et al. 2014).

Unlike in AF1, in the AF2 and Natural experiments, daily maximum and minimum
temperature were archived for each day of the year, which permited the calculation of
Tmin_hi; this is advantageous for the analysis given its increased role in recent heat extremes
(Gershunov et al. 2009). AF1 has 5-day intervals of specific humidity, allowing for analysis of
WBGT in the supplementary materials.

HadRM3P run over the Western US domain was initially configured and tested for the
Pacific Northwest for the years 2003—2007 (Zhang et al. 2009) and analyzed for extreme
events in Dulieére et al. (2011), while a brief evaluation of HadRM3P runs within the
weather@home system is given in Mote et al. (2015). Additional model evaluation for the
Western US and CA/NV from experiment AF1 is provided in the supplementary materials of
this paper.

HadAMS3P is able to reproduce the reanalysis-based large-scale meteorological conditions
associated with temperature fluctuations as represented by spatial patterns of the correlation
between geopotential height and western US-averaged summer temperature (Supplementary
Fig. 1). When compared to station observations in the regional domain (Supplementary Fig. 2),
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HadRM3P has positive biases for all temperature variables (Supplementary Table 1).
However, the spatial correlations of HadRM3P with observations are higher than the correla-
tions of reanalysis with observations, consistent with findings by Dulicre et al. (2011).

Given that both the observational and modeled frequency distributions of temperature are
approximately normal, the bias in the modeled output is removed using a simple mean and
variance technique (Massey et al. 2012; Sippel and Otto 2014), where the bias-removed model
output (MOD’) is calculated as:

MOD—MOD
oMOD

where MOD is the modeled output and uMOD, cMOD and pOBS, cOBS are the mean (1) and
standard deviation (o) of the non-parametric modeled and observed distributions, respectively.

MOD' = 0OBS + 1OBS (2)

3 Results
3.1 Decadal temperature anomalies in the observations

The present study examines a comprehensive record of observed temperature extremes dating
back to 1900 for validation and bias-correction of the superensemble model results. It includes
the lowest (Tmin_lo) and highest daily minimum (Tmin_hi), as well as the highest (Tmax_hi)
and lowest daily maximum (Tmax_lo) for the summer months of June-July-August (JJA). This
analysis serves as a baseline for exploring heat metrics relevant to public health..

Long-term trends are evaluated for the 1900-2010 period for California and Nevada
combined (CA/NV), bounded by 32.5-42°N and 125-114°W, for 39 stations with continuous
records since 1900 (Fig. 1). This domain is chosen because of its general spatial coherence in
terms of its summer climatology at lower elevations and because it has been analyzed
extensively in the literature (Gershunov et al. 2009; Walsh et al. 2014). Decadal anomalies
are calculated as the differences from the mean over the period 1901-1960.

The CA/NV domain’s JJA Tmax_hi (Fig. la, red bars) had its highest positive anomaly in
the 1930s (+0.85 °C above the mean of 37.6 °C), followed by the 1920s. These positive
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Fig. 1 Decadal averages of temperature anomalies relative to the 1901-1960 JJA average for California/Nevada
for (a) the highest daily maximum (red) and lowest daily minimum (yellow) temperatures and (b) lowest daily
maximum (red) and highest daily minimum (yellow) in a month
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anomalies in the earlier part of the 20th century were a result of a severe multi-year drought,
which, combined with harmful land-use practices (Cook et al. 2009), caused a depletion of soil
moisture and reduction of the temperature-moderating effects of evaporation (Kunkel et al.
2008). Since then, the data show no strong temporal trend in Tmax_hi. In contrast, Tmin_lo
(yellow bars) has been, in general, increasing since the 1940s, peaking at a positive decadal
anomaly of 2.03 °C in the 2000s (above the mean of 7.35 °C). The increases in Tmin_lo with
little change in Tmax_hi imply a reduction in the observed diurnal range.

Tmax_lo (Fig. 1b) during the 2000s surpasses the baseline mean 23.4 °C by 0.4 °C and is
higher than the 1930s. Interestingly, Tmax_lo shows strong negative values for the 1960s—
1990s period, hinting at other mechanisms not addressed here. Tmin_hi (+1.3 °C above the
mean of 16.85 °C) echoes the robust warming seen by Gershunov et al. (2009) and Bumbaco
et al. (2013) in nighttime minima. The same analysis for Tmin_hi over Central Valley stations
(not shown) shows a 1.5 °C rise in the warmest nights in the 2000s to a temperature of 23.2 °C
for the decadal average for July.

In summary, the observational record shows an increase in nighttime temperature in the
region; higher nighttime temperatures provide less temporary relief during multi-day heat
waves. This has serious health implications for socieconomically disadvantaged communities
where central air conditioning, found to be a major factor in reducing heat-related mortality
(O’Neill et al. 2005), may not be affordable.

3.2 Decadal comparisons in the model

Model simulations for the decade of the 2000s are compared against the 1960s in order to
investigate the roles of SST-imposed variability as well a rising levels of GHGs on summer
temperature extremes. Bias correction is employed for the Tmax_hi and Tmin_lo variables to
address biases in the model.

figure 2a shows return periods, an estimate of the likelihood of an event to occur, for
Tmax_hi. The data is derived from area averages of Tmax_hi for gridpoints over 30 stations
the Central Valley for the 2000s and 1960s. Each dot in the curve represents a single model
simulation, while the hatchings show bootstrapped inner 95 % percentile uncertainty ranges.
Here, Tmax_hi is 0.66 °C warmer in the 2000s for 10—100 year return periods. This suggests
that very warm days expected to occur every 100 years during the 1960s were twice as likely
to occur on any given year during the 2000s. Bias correction addresses the warm bias
displayed in model results, bringing them closer to observed values from 30 weather stations
in the Central Valley. The bias-corrected output shows Tmax_hi (Fig. 2b) is 0.46 °C warmer
for the same average of return periods. This is important because it suggests that the
differences between the two decades may not be as large when the warm bias is accounted for.

There is a smaller margin in the distribution for Tmin_lo (Fig. 2¢) between the two decades
analyzed compared to Tmax_hi. In the case of Tmin_lo, the 2000s are, on average, 0.46 °C
warmer than the 1960s for return periods ranging from 10 to 100 years. When bias correction
is applied the margin is only slightly smaller, with a 0.44 °C difference, implying a more
uniform rise in temperature for both high maxima and low minima. Interestingly, when the
area average of Tmin_lo is widened to the CA/NV domain (Supplementary Figure 7), the
change in return periods between 10 and 100 years is 0.95 °C without bias correction while
Tmax_hiis 0.61 °C. This suggests that other areas of California and Nevada have seen warmer
nights than days, consistent with the observations of the CA/NV domain used in Fig. 1 and the
extensive analysis on public health impacts carried out by Knowlton et al. (2009) and Guirguis

@ Springer



Climatic Change

[
(o2

O O 18
o o Bias-corrected 2000s
g g Highest Daily Maximum
o 44 g 44
o o
€ g 1960s
[ Highest Daily Maximum =

40 40

1 10 100 1 10 100
Return Period (years) Return Period (years)

c d
O 1 O 1
g o Bias-corrected 2000s
E 42 Lowest Daily Minimum
o 14 o 14
o o
£ £ 1960s
= Lowest Daily Minimum =

10 10

1 10 100 1 10 100
Return Period (years) Return Period (years)

Fig. 2 Return periods of 2000s versus 1960s comparisons for California’s Central Valley for (a) Tmax_hi (°C)
(b) bias-corrected Tmax_hi, (¢) Tmin_lo (°C) and (d) bias-corrected Tmin_lo using All forcings (AF1)
simulations. Hatchings show bootstrapped inner 95 % percentile uncertainty ranges

et al. (2014). The exposure and vulnerability of inhabitants to extreme heat in the more
temperate areas like San Francisco presents new problems that must be addressed by policy-
makers in the region.

3.3 Attribution of trends

Assessing the impact of climatic and other drivers of change requires a multi-disciplinary
approach for careful attribution research (Huggel et al. 2013; Hansen et al. 2015). Here we first
present the climate results from the simulations and then focus on trends most relevant for
public health risks associated with extreme heat.

Internal variability stemming from dominant SST modes has an important impact on
Western US climate (Wang et al. 2013). However, we did not screen years based on tropical
Pacific SSTs because major heat waves have occurred during all phases of the El Nifo-
Southern Oscillation (see Gershunov et al. 2009).

Both Tmax_hi and Tmin_hi are higher for AF2 than the Natural simulations (Fig. 3). The
change in Tmin hi (Fig. 3b) is greater than the change in Tmax hi (Fig. 3a) for the 10—
100 year return period average from the Natural to the AF2 experiment: 1 °C warmer for
Tmin_hi and 0.75 °C warmer for Tmax_hi, respectively. Here, bias correction is also applied.
We argue that what is being addressed in this instance is structural bias in the model and not to
forcing biases from the SSTs or GHGs. For the bias-corrected Tmax_hi (Fig. 3b), AF2 is
0.21 °C warmer than Natural for 10-100 year return period average. For bias-corrected
Tmin_hi (Fig. 3d), AF2 is 0.59 warmer than Natural.

Unlike simulations in AF1 comparing the 1960s and 2000s, where the change in Tmax_hi
was higher than Tmin_lo (Fig. 2), AF2 vs Natural (Fig. 3) is closer to observations. This may
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Fig. 3 Return periods of (a) Tmax_hi, (b) bias-corrected Tmax_hi, (¢) Tmin_hi and (d) bias-corrected Tmin_hi
simulated temperature of the summer (JJA) for California’s Central Valley during the decades of the 2000s from
the All forcings (AF2) and Natural simulations. Hatchings show bootstrapped inner 95 % percentile uncertainty
ranges

be due to the impact of natural variability, which is circumvented through the use of Natural
runs, thereby isolating the influence of GHGs on nighttime temperatures. It should also be
noted that both Tmin_lo and Tmin_hi had very similar trends and magnitude of change in the
observations (Fig. 1), and AF2 vs Natural also show Tmin_lo (not shown) has as wide a gap as
Tmin_hi in the return periods.

While model results for Tmin_hi largely reflect the trends found in the observations
(Fig. 1b), there is inconsistency with the Tmax_hi variable (Fig. 1a). The model shows a
warming trend while the observations suggest no trend. A study of global models displayed
more consistency among models in capturing the observed rise in minimum temperatures than
maximum temperatures (Lobell et al. 2007). The authors argued that model differences in
cloud changes, which affect maximum temperatures more than minima during the summer,
were the main source of uncertainty. It is possible that this may account for the disparity
between Tmax_hi in the weather@home output and station observations in the Central Valley.

3.4 Impact on health sector

To more explicitly consider the impact of observed climate change on heat-health risks to
vulnerable populations, PEA is used to assess changes in the probability of days exceeding
40 °C, a proxy for increasing heat stress in the California Central Valley. In Fig. 4a, AF2 is
plotted versus Natural runs for the total number of days with maximum temperatures exceed-
ing 40 °C in a month within the Central Valley, where a 100-year return period event of
13 days (not necessarily consecutive) above 40 °C in the Natural experiment is more than
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Fig. 4 (a) Return periods of All Forcings AF2 experiment (red) versus Natural (blue) for the total number of
days with maximum temperatures exceeding 40 °C, calculated from the mean of area averages over 30 stations in
the Central Valley. (b) Return periods for bias-corrected days exceeding 40 °C. Hatchings show bootstrapped
inner 95 % percentile uncertainty ranges

twice as likely to occur in AF2, corresponding to a fraction of attributable risk (FAR) of 0.67.
That is, anthropogenic greenhouse gas emissions doubled the chances that California’s Central
Valley experienced the heat extremes observed during the 2000s.

When bias correction is applied to days exceeding 40 °C (Fig. 4b), the return periods are
much warmer due to a higher average for the observations (5.13 °C compared to 4.93 °C for
AF2 and 4.24 °C for Natural) and higher standard deviation (5.62 °C compared to 3.22 °C for
AF2 and 2.86 °C for Natural). However, analysis of the bias-corrected data shows that AF2 is
0.32 days above Natural for the 10-100 year return average, while uncorrected data is
1.57 days, consistent with preceding analysis for other variables.

The fact that multiple meteorological variables, and factors such as vulnerability,
exposure, and adaptation (Huggel et al. 2013; IPCC 2012) influenced the public health
and other outcomes of the 2006 severe heat wave suggests that a multivariate approach is
required to assess the impact of this event (Fischer and Knutti 2012). High humidity heat
waves, such as the 2006 event, have been found to be especially dangerous, accounting
for 66 % of hospitalizations associated with heat waves in the Central Valley (Guirguis
et al. 2014). Unlike locations such as the eastern US and southeast Europe, the Central
Valley is usually very dry during the summer and the model tends to favor high heat and
low humidity values for most simulations. However, simulations do show markedly
warmer temperatures in the 2000s are the main driving factor in heat stress
(Supplementary Fig. 3).

4 Concluding remarks

In the study by Thompson and Otto (2015), it is argued that PEA can serve as a basis for loss
and damage on the international stage in accordance with the Warsaw International
Mechanism for Loss and Damage (WIM). In this study, this notion is extended further to
address climate justice within a developed nation like the United States. Here, PEA is used to
examine the influence of anthropogenic heat-trapping gases on variables relevant to the public
health sector, where the literature finds a strong link between extreme heat and vulnerable
populations. During the July 2006 heat wave, for example, disadvantaged communities in the
Central Valley of California were disproportionally affected (Knowlton et al. 2009).
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The model analysis suggests a strong link between rising temperature extremes and
increasing levels of heat-trapping gases in the atmosphere when simulations with and without
anthropogenic emissions are compared. Even more noteworthy are the marked increases in
low temperatures in the observational record, decreasing the diurnal temperature range which
can now be attributed to human activities (Stone and Weaver 2002). Being able to robustly
attribute an increase in heat stress to human induced climate change is only one step away from
attributing excessive deaths in a particular heat wave, highlighting the societal importance of
these kinds of attribution studies and the need to further refine the method in future attribution
work. These refinements include improvements for the inclusion of public health planning and
adaptation actions taken prior to an event, socioeconomic demographics, and other human
systems information (Hansen et al. 2015).

There is a question, however, as to which parties would be responsible for reparations or
adaptation costs within the United States. It has been argued that this cost should not be taken
up solely by the general public through taxation (Allen 2003). Instead, a different route can be
taken if multinational corporations that extract carbon from the ground are included in the
conversation as accountable for the impacts of climate change (Heede 2014). Thus, PEA can
be focused more directly on changes in the environment incurred by carbon pollution traceable
to major industrial carbon producers, allowing for policy-makers within developed nations to
consider compensation and adaptation without solely relying on public funds.
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