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Abstract

By facilitating independent shifts in species’ distributions, climate disruption may result in the rapid development of novel
species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach
borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based on
current and future species-distribution models for 60 focal species. Projections of future no-analog communities based on
two climate models and two species-distribution-model algorithms indicate that by 2070 over half of California could be
occupied by novel assemblages of bird species, implying the potential for dramatic community reshuffling and altered
patterns of species interactions. The expected percentage of no-analog bird communities was dependent on the
community scale examined, but consistent geographic patterns indicated several locations that are particularly likely to host
novel bird communities in the future. These no-analog areas did not always coincide with areas of greatest projected
species turnover. Efforts to conserve and manage biodiversity could be substantially improved by considering not just
future changes in the distribution of individual species, but including the potential for unprecedented changes in
community composition and unanticipated consequences of novel species assemblages.
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Introduction

With rapid climate disruption, many species may adapt by

shifting their ranges independently of other species [1,2]. This

differential movement is evidenced by the existence of major North

American and European plant and animal assemblages with no

modern analogs as recently as 10,000 BP [3–5]. Even within the last

century, significant changes in community composition have been

attributed to climate change [6,7]. Such changes will likely become

more extreme because warming is predicted to escalate for at least

the next 40 yr [8], potentially resulting in novel combinations of

species. Consequently, current community dynamics such as

predator-prey or competitive interactions may become affected as

species assemblages are reshuffled in new ways [9]. New species

interactions that develop within these no-analog assemblages may

result in the decline or extirpation of species as they adjust or adapt

to changing climates, especially when the climate is changing at a

rapid rate. Realizing the need to understand the possibility of

unexpected responses resulting from changes in species co-

occurrence led us to identify no-analog future communities by

developing a systematic quantification of potential climate-induced

community changes for California’s terrestrial breeding birds.

Despite their limitations [10–12], species-distribution models

(SDMs) allow us to project the effects of future climate change on

the occurrence patterns of species, ecosystems, and biomes. Many

studies have projected future changes in species’ distributions and

patterns of diversity, with an emphasis on range contractions and

the potential for species extinctions [13–15]. Most such studies

have identified more range contractions than expansions. To

synthesize multi-species impacts of climate disruption, however,

one must take the next step of considering changes in patterns of

species co-occurrence. Several studies have done this by

quantifying expected rates of species turnover as an indication of

change in community composition [10,16–18]. Although high

rates of projected species turnover have been identified for many

geographic areas, this does not directly consider the degree to

which novel or ‘‘no-analog’’ communities may be anticipated.

Entirely unique combinations of species and the new interactions

that occur among those species may lead to even greater rates of

local extirpation if species cannot adapt quickly enough [19].

We focused on California because it is a large, floristically and

topographically diverse state that global climate models (GCMs)

have shown to be particularly vulnerable to the effects of a

changing climate [20,21]. Climate models generally concur in
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projections of significant warming for California over the next

century, with small changes in precipitation but potentially large

declines in snow accumulation [22,23]. The diverse climate and

topography of the state can be represented in regional climate

models (RCMs), which use fine-scale horizontal resolutions and

specific physics and parameterizations to dynamically downscale

GCM predictions [23]. Although statistically downscaled GCMs

also yield improved estimates at a relatively fine scale [24], we

chose to use computationally-intensive RCMs because they can

simulate nonlinear climate processes that are likely to change in

the future.

We used a representative subset of terrestrial breeding birds to

evaluate the potential for no-analog assemblages as a result of

projected climate disruption. We chose birds for this analysis due

to their high trophic position, relatively high visibility and

detectability during the breeding season, and high mobility, which

we assume allow them to track environmental change rapidly

[25,26]. We used high-quality, breeding-season datasets from

multiple sources to develop intermediate-scale (800-m pixel

resolution) spatial models to predict current and future probabil-

ities of occurrence for each of 60 focal species selected to represent

avian communities of five major habitat types: oak woodland,

coniferous forest, chaparral/scrub, grassland, and riparian [27].

At the continental scale, avian distribution models are typically

based on temperature- and precipitation-based bioclimatic

variables [28,29]. These factors may limit bird distributions

directly, via physiology, but they also help determine habitat

availability for birds, via vegetation patterns. At a regional level,

however, the inclusion of vegetation/landcover in SDMs can be

used to create more refined projections [30,31]. This is especially

true for regions of high topographic diversity, where SDMs must

have sufficient resolution to predict how species and communities

will respond to climate change in heterogeneous landscapes. Thus,

to improve the capacity of our models to incorporate changes

relevant to birds, we included vegetation distribution, modeled

from climate, soil, and topographic variables for the future period.

Based on the frequent finding that birds respond more to the

structure and form of vegetation than to floristic composition [32],

we used general vegetation types (aggregations of classified

vegetation types at the state level) rather than plant species to

represent bird habitats. By focusing on life form and habitat

structure rather than plant species composition, we avoided

making the unrealistic assumptions that individual plant species

would be able to disperse to more climatically suitable areas in a

short time-frame and that future vegetation communities would

maintain their current assemblages of plant species. Although our

SDM approach to vegetation modeling may omit some important

mechanisms for vegetation change, such as direct physiological

effects of CO2 [33] and changes in vegetation disturbance [34], we

found existing mechanistic vegetation model outputs [20] too

spatially coarse for our purposes.

We compared assemblages of bird species under current

climatic conditions with predicted future assemblages based on

RCM projections with inputs from two different GCMs (GFDL

and CCSM, see Materials and Methods) under a medium-high

emissions scenario [IPCC SRES A2 [8]] through 2070. Two SDM

algorithms (GAM and Maxent, see Materials and Methods) were

used for comparison purposes. We applied the modern analog

method [35] of paleoecology, which has been used to compare

pollen or fossil samples with modern assemblages [3,36] and to

identify future no-analog climates [37]. We quantified avian

community dissimilarity for all possible combinations of current

and future locations throughout California, based on predicted

probabilities of individual species occurrences, to identify possible

no-analog communities of the future. To accomplish this, we

compared results across a range of dissimilarity thresholds based

on different levels of community aggregation (i.e., ‘‘community

scale’’; 20–100 groups, see Materials and Methods). We also

compared the geographic patterns of no-analog communities to

patterns in local community change over time.

Results

Individual species predictions
Our models had very good predictive abilities for the current

period (Table 1). On average, Maxent models predicted higher

probabilities of current and future occurrence than did the GAMs.

The mean change in species’ mean state-wide probability of

occurrence was also greater for Maxent-based predictions than for

GAM-based predictions, as was the number of species whose

distributions were predicted to decrease. The mean predicted

absolute change in species’ distributions was greater for the

GFDL-based climate projections (41–43%) than for the CCSM-

based projections (29–32%), although more species were predicted

to decrease based on CCSM compared to GFDL. All SDM-

climate-model combinations predicted more species decreasing

than increasing.

No-analog communities
Looking at future predicted bird communities across all

combinations of climate models, SDM algorithms, and community

scales, estimates of no-analog communities varied considerably,

ranging from 10% to 57% of California’s land area (Table 2). For

any given combination of climate model and SDM algorithm (e.g.,

GFDL and GAM, Fig. 1), the frequency of no-analog grid cells

increased with the number of grouping levels considered. At the

Table 1. Summary of current and future species distribution model predictions.

SDM algorithm Mean AUC1 Mean current P2 Climate model Mean future P2 Mean change (P/%)3
# species increasing/
decreasing

GAM 0.904 0.123 GFDL CM 2.1 0.124 0.0410/42.9% 22/38

NCAR CCSM 3.0 0.113 0.0303/31.8% 17/43

Maxent 0.895 0.177 GFDL CM 2.1 0.146 0.0583/41.3% 13/47

NCAR CCSM 3.0 0.149 0.0403/28.8% 9/51

1Area under the curve of the receiver operating characteristic plot.
2Predicted probabilities of occurrence, averaged over 637,290 800-m grid cells and 60 species (Table S1). Mean change across species is based on absolute values of
individual species’ mean change across all pixels.

3(future P – current P)/current P.
doi:10.1371/journal.pone.0006825.t001

No-Analog Bird Communities
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broadest community scale evaluated (20 groups), 10% to 25% of

grid cells had effectively no modern analogs (,0.5% of total area,

see Materials and Methods), depending on the climate model and

SDM algorithm. At the finest scale of community composition

evaluated (100 groups), the estimate ranged from 37% to57%. For

our intermediate grouping level (60 groups), 18% to 50% of the

state had effectively no modern analogs. These areas occurred

primarily in the non-coastal portions of the state (Fig. 2).

The magnitude of community change varied more by SDM

than by climate model, with Maxent-based estimates of no-analog

bird communities being more dramatic than those based on

GAMs. Geographic patterns exhibited similar levels of variation

across climate models and SDMs, with GFDL-based projections

generally more dramatic and spatially clustered. Areas of

agreement across climate models and SDMs in the distribution

of no-analog communities occurred primarily in the southern

deserts, in the southern portion of California’s central valley, and

in the northeastern portion of the state (Klamath Mountains and

Modoc Plateau). Areas projected to have the greatest number of

modern-analog communities tended to be located in central

California around the San Francisco Bay/Delta region; interme-

diate values were found throughout the coastal and Sierra Nevada

mountain ranges.

Species Turnover
All of the areas that were predicted to have no-analog

communities under future climate change scenarios were, by

definition, also identified as areas of high species turnover, based

on pixel-level community dissimilarity (Fig. 3). The reverse was not

true, however, as many of the areas of greatest predicted change in

community composition—primarily located in mountain regions

such as the northern Sierra Nevada foothills—had future

predicted bird communities with many modern analogs.

Discussion

Our analysis suggests that, by 2070, individualistic shifts in

species’ distributions may lead to dramatic changes in the

composition of California’s avian communities, such that as much

as 57% of the state (based on the scales of communities that we

examined) may be occupied by novel species assemblages. An even

greater area would be considered no-analog if finer community

delineations were considered. Furthermore, because we used a

representative subset of California terrestrial breeding birds, it is

likely that we underestimated the frequency of no-analog bird

communities that would be apparent if greater ecological

complexity were considered. Thus, although net changes in the

distributions of common species may be relatively small due to the

combination of local decreases and increases, the cumulative effect

on community composition is likely to be great due to variation in

individual species’ responses to climate disruption and resulting

differences in geographic shifts.

Our conclusions differ from those of a similar analysis of

European birds [38]. This is not surprising given the different

scales of analysis (fewer than 25 species groupings were evaluated

for all of Europe). Our results do not necessarily suggest that

entirely novel California biomes (as indicated by birds), on the

Figure 1. Number of modern analogs for predicted future bird communities across scales. ‘‘Analog’’ communities are those for which
Bray-Curtis dissimilarity was less than an ROC-determined optimal threshold, based on the level of community aggregation: A, 20 groups. B, 60
groups. C, 100 groups. Here, predictions of future bird communities are based on GFDL CM2.1, Scenario A2, 2038–2070, generalized additive models.
Patterns across scales were similar for the other climate models and distribution-model algorithms.
doi:10.1371/journal.pone.0006825.g001

Table 2. Percent of future predicted California bird
communities with no modern analogs1.

Number of groups

Climate model/Distribution
model algorithm 100 60 20 5

Current/Maxent (baseline) 7.11% 4.69% 0.941% 0%

Current/GAM (baseline) 8.33% 2.27% 0.863% 0.0628%

GFDL CM2.1/Maxent 56.6% 50.0% 25.1% 1.49%

GFDL CM2.1/GAM 41.2% 23.1% 13.6% 3.26%

NCAR CCSM3.0/Maxent 46.7% 40.3% 20.7% 2.81%

NCAR CCSM3.0/GAM 37.2% 18.3% 9.57% 3.48%

1Values are expressed as the percent of total land area, standardized with
respect to grid cell resolution, in that any grid cell with ,32 modern analogs
(,0.5% of the total area) was considered to have effectively no modern
analog.

doi:10.1371/journal.pone.0006825.t002
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order of no-analog biomes identified for the late-Pleistocene [3,5],

would be anticipated by the year 2070. Rather, our model-based

findings highlight the potential for new patterns of community

assembly across a range of local and regional scales over the 60-

year timeframe of this study. Although our study focused on birds,

the situation may be similar for other taxa [39].

Because our numeric findings are scale-dependent, in terms of

how a community is defined, one should not focus on specific

percentages of predicted no-analog areas, but instead consider the

geographic patterns over a range of community scales. Based on

the most refined delineation of communities, our analysis revealed

several no-analog ‘‘hotspots,’’ primarily in arid inland portions of

the state. These patterns may reflect the greater climatic variability

of inland areas with continental climates and little or no

moderating maritime influence, which are also likely to be more

influenced by climate disruption [21]. In addition, regions of high

geologic diversity such as the Klamath Mountains in northern

California, which represent the convergence of three mountain

ranges [40], may also have high bird community heterogeneity

and thus greater potential for the re-shuffling of species.

Figure 2. Number of modern analogs for predicted future bird communities across climate models and distribution-model
algorithms. ‘‘Analog’’ communities are those for which Bray-Curtis dissimilarity was less than an ROC-determined optimal threshold, based on a 60-
group level of community aggregation. Predictions of future bird communities are based on: A, GFDL CM2.1, Scenario A2, 2038–2070, generalized
additive models. B, GFDL CM2.1, Scenario A2, 2038–2070, maximum entropy models. C, NCAR CCSM3.0, Scenario A2, 2038–2069, generalized additive
models. D, NCAR CCSM3.0, Scenario A2, 2038–2069, maximum entropy models.
doi:10.1371/journal.pone.0006825.g002

Figure 3. Predicted species turnover across climate models and distribution-model algorithms. Species turnover was calculated as the
Bray-Curtis (BC) dissimilarity between predicted current and future bird communities. Lower category breaks (0.204, 0.285) represent optimal
dissimilarity threshold used to identify non-analog communities, based on a 60-group level of community aggregation (GAMs and Maxent models,
respectively). Predictions of future bird communities are based on: A, GFDL CM2.1, Scenario A2, 2038–2070, generalized additive models. B, GFDL
CM2.1, Scenario A2, 2038–2070, maximum entropy models. C, NCAR CCSM3.0, Scenario A2, 2038–2069, generalized additive models. D, NCAR
CCSM3.0, Scenario A2, 2038–2069, maximum entropy models.
doi:10.1371/journal.pone.0006825.g003
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Although the ‘‘no-analog’’ future communities that we identi-

fied may indeed have analogs outside the state (perhaps especially

in Baja California, Mexico), they still represent novel communities

for California, and as such may pose significant management

challenges for agencies or groups not accustomed to looking

beyond state borders. On the other hand, we did not constrain our

quantification of modern analogs within the state by distance, so a

current community could be considered a modern analog of a

future predicted community even if it were in a distant part of the

state. Given California’s high variability, however, these more

distant ‘‘analogs’’ are more likely to differ in other respects not

captured by our bird models. Thus, these sources of over- and

under-estimation of modern analogs may partly balance each

other out, even if geographic patterns are biased toward the

southern parts of the state.

In contrast with species-turnover ‘‘hotspots’’ identified from the

same set of model predictions, the emergence of novel commu-

nities was not generally predicted for mountainous regions of the

state (notably the Sierra Nevada range), where communities might

be expected to shift upslope in unison, maintaining the overall

integrity of current species assemblages. Recent [7] and paleoeco-

logical [41] studies provide some evidence to the contrary,

however. No-analog bird communities could arise in these areas

for a number of reasons not captured by our distribution modeling

approach, such as differential rates of upslope migration for

different bird species, as well as for the individual plant or

invertebrate species that they may rely upon for nesting or for

food.

Our analysis assumes that species interactions do not constrain

current or future species distributions. This is one of the chief

limitations of an empirical SDM approach, which necessarily

models the realized, rather than fundamental niche of a species

[12]. The inclusion of vegetation in our bird models, however,

may indirectly capture some of the factors that determine a

species’ realized niche [10]. Although our models could potentially

have included existing species interactions (i.e., co-occurrence with

other bird species [42]), we cannot predict interactions among

previously unknown combinations of species. The novel commu-

nities that result from distributional shifts may persist as species

adapt or coexist, or they may undergo further change as species

are excluded through competition, predation, or other biotic

interactions. Regardless of the outcome, these no-analog commu-

nities will be characterized by high levels of ecological change.

Taking a Gleasonian view of ecological communities [1], the

high frequency of no-analog bird communities that may occur

over the next century can be said to reflect the individualized

nature of climate-change impacts on different species and the

transient nature of current ecological communities as we know

them [43,44]. Previous research has recognized that climate

change is likely to accelerate the reshuffling of current commu-

nities [9], and the effect has been demonstrated through modeling

for individual sets of interacting species [45]. Here we have

provided a systematic quantification of potential climate-induced

community change for a large and diverse taxonomic group, using

best-available datasets and species-distribution modeling tech-

niques applied to focal species.

The likely emergence of novel, no-analog communities over the

coming decades presents enormous conservation and management

challenges. These challenges will be exacerbated in the high

proportion of landscapes that are dominated by intensive human

management [46,47], where it will be more difficult for species to

move to new climatically suitable areas. As new combinations of

species interact, some species will face new competition and/or

predation pressures while others may be released from previous

biotic interactions. Managers and conservationists will be faced

with difficult choices about how, where, and on which species to

prioritize their efforts and investments. Traditional management

approaches that focus on maintaining the status quo will not likely

be successful; novel approaches will be needed to manage novel

communities [48]. Adaptive management will become even more

important as conservation targets shift and new ones emerge in

unanticipated ways. Successful adaptive management will depend

on rapid transfer of information from the scientific community to

resource managers so that decisions can be made quickly.

Scientists in a no-analog future will need to be more actively

involved in planning and decision-making processes that affect

biodiversity.

Materials and Methods

Avian Occurrence Data
Geo-referenced point-count survey [49] data were obtained

from three sources: 1. PRBO Conservation Science (PRBO) and

partners for 1993–2007 (http://www.prbo.org/cadc/); 2. USDA

Forest Service Pacific Southwest Research Station Redwood

Sciences Laboratory (RSL) and Klamath Bird Observatory

(KBO) for 1992–2006; and 3. the North American Breeding Bird

Survey (BBS) for 1997–2006 [50] (Fig. S1). Only BBS points with

available GPS coordinates were used. The northern and central

portions of the state were more comprehensively sampled than the

southern part of the state. Several filters were applied to PRBO,

RSL, and KBO point-count data to remove non-breeding records.

Migratory species (Table S1) were only included only if the species

was encountered on more than one survey within a season for a

given survey route. An exception was made for the desert areas of

southern California, which were surveyed earlier in the season,

resulting in multiple detections of non-breeding migrants. For

these points, we excluded all species known not to breed in the

desert, regardless of encounter rate. All records were subsequently

filtered to include only data from April through July. BBS surveys,

which are conducted at the height of the breeding season (June),

were assumed to represent breeding individuals.

We excluded all listed and special concern [51] species in order

to focus on the relatively common species that are more likely to

be climate- or vegetation-limited, rather than constrained by

demography (e.g., low reproductive success or survival). This

decision also enabled us to focus on species with comprehensive

data.

Climate Data
Current climate data were based on 30-year (1971–2000)

monthly climate normals interpolated at an 800-m grid resolution

by the PRISM Group [52]. We used monthly means for total

precipitation and minimum and maximum temperature to derive

a standard set of biologically meaningful climate variables [53].

Future climate scenarios were based on projections from a

regional climate model, RegCM3 [54] at a 30-km resolution, with

emissions trajectories taken from the Intergovernmental Panel on

Climate Change (IPCC) SRES A2 scenario [8] and boundary

conditions based on output from two GCMs:

1) CCSM: National Center for Atmospheric Research (NCAR)

Community Climate System Model (CCSM3.0), an atmo-

sphere-ocean global climate model (AOGCM) run from

1870–2099. The RCM time periods run were 1968–1999

(observed CO2) and 2038–2069 (478–610 ppm CO2).

2) GFDL: Geophysical Fluid Dynamics Laboratory (GFDL)

GCM CM2.1, an AOGCM run from 1860–2099. The RCM

No-Analog Bird Communities
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time periods run were 1968–2000 (observed CO2) and 2038–

2070 (478–615 ppm CO2).

RCM monthly temperature and precipitation outputs were

averaged across years to obtain one set of monthly values for the

current and future time windows. The delta values (difference for

temperature, ratio for precipitation) between the current and

future RCM values were applied to the PRISM climate grids to

produce future monthly temperature and precipitation grids at an

800-m resolution.

Vegetation Classification Model
We used current vegetation mapped by the California Gap

Analysis Project [55] to model future vegetation based on observed

relationships between vegetation, soil, climate, and topography.

Vegetation types based on the California Wildlife Habitat

Relationships System [56] were aggregated into 12 general classes

to improve model classification accuracy (Table S2). We excluded

developed and agricultural vegetation categories from our model,

as well as aquatic, wetland, riparian, and non-vegetated categories

that were thought to be driven more by proximity to water sources

or were not directly climate-associated. Several uncommon

vegetation types were also excluded due to sample-size limitations.

From a 10-km grid of points across the state, we removed those

that fell in an excluded vegetation type and used the resulting

sample (n = 9,752) to develop vegetation classification models

using the Random Forest algorithm [57]. We used the

‘randomForest’ package for R [58], building 500 classification

trees with three randomly-sampled candidate variables evaluated

at each split.

As inputs to the vegetation models we used eight derived

bioclimatic variables, three soil variables, and two topographic

variables (Table S3). The resulting set of models was used to

develop general vegetation predictions for the future time periods

based on the CCSM and GFDL climate models (Fig. S2). Soil and

topographic variables were assumed to remain the same in the

future period. For consistency with the current vegetation layer,

predicted future vegetation was augmented with the current urban

and agricultural landcover types, which were not modeled. We did

not address projected land-use changes.

Avian Distribution Models
Breeding-season point-count survey data were used to build

distribution models for 60 avian focal species (Table S1). Species

presence and absence data were aggregated at the 800-m pixel

level for modeling purposes. For each species, we generated

predictions of current and future distribution based on the

vegetation and climate datasets described above, as well as stream

proximity as a proxy for riparian vegetation. We used two

distribution-modeling algorithms: maximum entropy (Maxent

3.2.1) [59] and generalized additive models (GAM) [60]. Although

Maxent is typically used with presence-only data, we incorporated

species absence data in place of random environmental back-

ground data to constrain the models to the environmental space

that was sampled [61]. We used default program settings except

for the regularization value, which was increased from 1 to 2 to

reduce over-fitting. We implemented generalized additive models

using the ‘gam’ package for R with a binomial distribution and

logit link function, using smoothing splines with no target degrees

of freedom specified.

Receiver operating characteristic (ROC) plots [62] based on

presence and absence data were constructed for each model. The

ROC area under the curve (AUC) values for randomly selected

test locations (25% of data withheld from models) were compared

to evaluate model performance across classification thresholds.

Model predictions for the current period were also visually

inspected and compared to expert-based range maps.

Modern Analog Analysis
Using version 0.6–6 of the ‘analogue’ package [63] for R, we

conducted an analysis of modern analogs [35] for resulting model

predictions. Due to computational limitations at the 800-m

resolution of our predictions, we averaged predicted probabilities

of species occurrence across 10-km grid cells and conducted the

modern analog analysis on the resulting values.

We calculated a Bray-Curtis distance (dissimilarity) metric for

each pair of current grid cells (n = 6,375), based on predicted

probability of occurrence for each species. To determine an

appropriate threshold for determining ‘‘analog’’ vs. ‘‘non-analog’’

communities, we employed an objective approach that involved

identifying the value of the dissimilarity metric (d) that best

separated current avian assemblages from each other [64].

Because we had no a priori classification of avian communities

for California, except at the broad-scale level of general habitat

types (e.g., conifer, oak woodland), we used the Bray-Curtis

dissimilarity matrix to group current grid cells using a hierarchical

agglomerative cluster analysis based on Ward’s criterion [65]. As a

starting point, we clustered current grid cells into 60 groups, which

is similar to the number of wildlife habitat types defined by the

State of California [56], and also coincides with the number of

focal species modeled. To bracket this definition of an avian

community, we also evaluated clusters with 20 and 100 groups

(Figs. S3 and S4). The lower value represents a broad scale of

species assembly and, when mapped, is at the spatial scale of a

general vegetation association or ecological subregion. The upper

value is a relatively fine-scale representation of avian assemblages,

and is most likely to represent the local community scale at which

species interactions have the largest influence [44,66].

Using the grid cell groupings identified by the cluster analysis, we

used a receiver operating characteristic (ROC) curve analysis to

identify the dissimilarity value for which the true positive rate within

groups (or ‘‘analogs’’) was maximized and false positive rate

(between groups, or ‘‘non-analogs’’) was minimized; this is

equivalent to the point at which a line drawn tangent to the curve

has a slope of one [64]. Between- and within-group dissimilarity

values were combined across groups to develop a single ROC curve

and identify a single optimal dissimilarity value. This analysis was

limited to the k nearest neighbors (grid cells of lowest dissimilarity),

where k was specified as the minimum group size. We chose the

highest value of k that could separate within- and among-group

dissimilarity values to ensure that our definition of non-analog was

as conservative as possible. This optimal dissimilarity threshold

value (p) was determined separately for each SDM algorithm

(Maxent, GAM) and each grouping level (20–60–100). The value of

p decreased as the number of groups increased (Table S4).

For each community grouping level, climate model, and

distribution modeling algorithm, we calculated the number of

modern analogs for each future grid cell based on the number of

current grid cells with which Bray-Curtis dissimilarity was less than

p. The percent of novel grid cells was summarized for each of the

resulting grid layers. We calculated the percent of grid cells with

effectively zero (,0.5%) modern analogs, thereby standardizing

this calculation according to the total number of grid cells

available (6,375 for the 10-km resolution). A comparison across a

range of scales (10–50 km) suggested that these standardized

results were relatively consistent (within 5% of each other) across

scales, while the percent of grid cells with exactly zero modern

analogs increased with grid-cell size.
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Species Turnover
For comparison with our quantification of no-analog commu-

nities, and to characterize the geographic patterns of changes in

community composition (or species turnover) between the current

and future periods, we also calculated the change in community

composition over time. For each 10-km grid cell, we calculated the

Bray-Curtis distance or dissimilarity metric between current and

future community composition, based on predicted probability of

occurrence for the same 60 avian focal species.

Supporting Information

Figure S1 Locations and sources of point-count data used to

develop avian distribution models. Occurrence information from

16,742 point-count locations was aggregated for each species at

the 800-m pixel level for modelling purposes, resulting in an

effective sample size of 6,964. PRBO = PRBO Conservation

Science; RSL = USDA Forest Service Redwood Sciences Lab;

KBO = Klamath Bird Observatory; BBS = North American

Breeding Bird Survey.

Found at: doi:10.1371/journal.pone.0006825.s001 (3.51 MB TIF)

Figure S2 Modeled current and future vegetation distribution

for California. A, current vegetation. B, future vegetation based on

GFDL CM2.1, Scenario A2, 2038–2070. C, future vegetation

based on NCAR CCSM3.0, Scenario A2, 2038–2069. Models

were developed using California Gap Analysis vegetation data (see

Table S2 for definitions of vegetation codes). Versions used as

inputs to bird models also included current urban, agricultural,

and wetland/riparian vegetation types (from Gap Analysis data).

Found at: doi:10.1371/journal.pone.0006825.s002 (4.69 MB TIF)

Figure S3 Levels of bird community aggregation used to

determine optimal no-analog thresholds for generalized additive

model predictions. A, 20 groups. B, 60 groups. C, 100 groups.

Found at: doi:10.1371/journal.pone.0006825.s003 (3.84 MB TIF)

Figure S4 Levels of bird community aggregation used to

determine optimal no-analog thresholds for maximum entropy

model predictions. A, 20 groups. B, 60 groups. C, 100 groups.

Found at: doi:10.1371/journal.pone.0006825.s004 (3.92 MB TIF)

Table S1 Focal species, habitat categories, and migratory status.

Found at: doi:10.1371/journal.pone.0006825.s005 (0.10 MB

DOC)

Table S2 Vegetation classes modeled.

Found at: doi:10.1371/journal.pone.0006825.s006 (0.04 MB

DOC)

Table S3 Summary of bioclimatic and soil variables included in

vegetation classification models1.

Found at: doi:10.1371/journal.pone.0006825.s007 (0.05 MB

DOC)

Table S4 Optimal dissimilarity thresholds by level of community

aggregation (number of groups) and distribution model algorithm.

Found at: doi:10.1371/journal.pone.0006825.s008 (0.04 MB

DOC)
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