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1 Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland, 2 Department of Biodiversity and Evolutionary Biology, National

Museum of Natural Sciences, Consejo Superior de Investigaciones Cientı́ficas, Madrid, Spain, 3 ‘Rui Nabeiro’ Biodiversity Chair, Centro de Investigação em Biodiversidade e
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Abstract

Climate change is affecting biodiversity worldwide, but conservation responses are constrained by considerable uncertainty
regarding the magnitude, rate and ecological consequences of expected climate change. Here we propose a framework to
account for several sources of uncertainty in conservation prioritization. Within this framework we account for uncertainties
arising from (i) species distributions that shift following climate change, (ii) basic connectivity requirements of species, (iii)
alternative climate change scenarios and their impacts, (iv) in the modelling of species distributions, and (v) different levels
of confidence about present and future. When future impacts of climate change are uncertain, robustness of decision-
making can be improved by quantifying the risks and trade-offs associated with climate scenarios. Sensible prioritization
that accounts simultaneously for the present and potential future distributions of species is achievable without overly
jeopardising present-day conservation values. Doing so requires systematic treatment of uncertainties and testing of the
sensitivity of results to assumptions about climate. We illustrate the proposed framework by identifying priority areas for
amphibians and reptiles in Europe.
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Introduction

Observed increases in global average temperatures, rise in the

global average sea level and changing patterns and frequencies of

extreme weather events, strongly suggest that the climate is

changing according to model predictions [1]. Ecosystems are

already responding to such changes, with species range shifts,

phenological changes, and changes in species’ abundances and

community composition [1,2]. Climate change is thus recognized

as a major threat to biodiversity and a big challenge to

conservation [3–5].

Protected areas are critical instruments for safeguarding

biodiversity. However, due to their increasing isolation in a matrix

of highly modified landscapes, and the fact that they are

geographically fixed, present-day protected areas are unlikely to

be sufficient to accommodate and buffer climate-induced changes

in biota [5–7]. Changes of species composition in protected areas

are already being observed (e.g. [8]), and forecasts for the near

future estimate that even bigger changes could take place [9–13].

In the past, conservation planning has primarily focused on

preserving existing biodiversity pattern and has acted reactively

with respect to new threats [14,15]. But the need for a paradigm

shift is being emphasized [5,16–19]. Proactive responses to

conservation challenges require the existence of reliable forecasts

and a combination of present and future conservation goals, while

limited conservation resources entail that these goals are to be met

efficiently. The discipline of systematic conservation planning has

thus seen the development of methods for solving such non-trivial

conservation resource allocation problems, factoring in predicted

species range shifts by modelling expected responses of species to

climate change [5,19–21]. Yet, an issue of concern is the

uncertainty associated with both climate change and the

consequent species responses [22]. This is particularly trouble-

some, because decision makers might be reluctant to base their

conservation decisions on highly uncertain forecasts of future

impacts that require trading-off scarce resources needed for

mitigation of present day threats [19,23].

An inherent source of uncertainty is the fact that we can only

make projections about the future that are conditional to our

knowledge and simplified model assumptions. To understand the

potential impacts of future climate change scientists have been

forced to analyse responses against distinct but equally likely
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scenarios of future development. Scenarios are plausible combi-

nations of circumstances used to describe a future set of conditions,

such as the widely used SRES scenarios [24,25] that consider a

wide range of possibilities for changes in population, economic

growth, technological development, improvements in energy

efficiency, and the like. Scenario assessments are important for

policymaking, outlining a potential range of outcomes and thus

influencing decisions. But despite the pressing interest in scenario

probability [26,27], scenarios typically lack an associated likeli-

hood, making it difficult to assess the relative risks of particular

adaptation policies.

Perhaps the most widely discussed aspect within the climate

change conservation context is the uncertainty that arises from

different modelling approaches when forecasting species distribu-

tion shifts. Most often effects of climate change on species

distributions are predicted using niche models (also called

bioclimatic envelope models, habitat models, or species distribu-

tion models). These are correlative approaches that relate current

species occurrences to aspects of the environment, e.g., climatic

variables, to then infer the sets of conditions in which species can

be present. Ecological niche models include many assumptions

and limitations: They are not concerned with dispersal processes,

the dynamics of population at the leading or retracting edge, or the

potential for adaptation or species’ interactions [28] (but see e.g.

[29] and [30]). A large number of modelling approaches is

available, and differences in their algorithms, parameterizations

and the assumptions they make regarding the data often result in

variation in outputs [31,32]. Recent studies show that the

variability in the predictions can be as high (or even higher)

between different niche-based models than between different

emission scenarios [33–36]. To cope with such inter-model

variation, [37] advocate the use of multiple models within an

ensemble forecasting framework. This approach allows identifica-

tion of consensus among all forecasts, or consensus among subsets

of forecasts, as well as exploration of the full breadth of inter-

model variability.

Conservation exercises that account for climate change impacts

frequently neglect the point that knowledge about the past and

present is much more certain and accurate than knowledge about

future. Thus one should give less weight to future projections than

Figure 1. A flow chart showing how species distribution maps for baseline and future are created across the different modelling
techniques m, discounting the mean values (denoted by an asterix) with inter-model variability (standard deviation, see text).
Connectivity maps CBj and CFj are created based on the discounted baseline and future layers, resulting in four different input maps per species j and
per scenario s. Prioritization is done separately for each scenario, producing multiple results per scenario where weights given to future distributions
and connectivities are varied. Trade-off curves (Fig. 5) and comparisons between scenarios (Fig. 3) are done by focusing on the top 10% priorities of
each Zonation result.
doi:10.1371/journal.pone.0053315.g001
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to present ones, especially if protecting important future locations

comes at the expense of protecting important locations at present.

Despite noticing that inter-model variability increases with time,

existing conservation planning approaches have implicitly treated

both current and projected distributions as equally certain (e.g.

[20,21,38]). Here we suggest a practical approach to conservation

planning where several sources of uncertainty, including alterna-

tive emission scenarios, can be accounted for. We demonstrate the

proposed approach by identifying conservation priorities for

European amphibians and reptiles. We first demonstrate how

inter-model variability is spatially distributed across the region and

how this can be accounted for in conservation prioritization. We

then look at differences that rise from planning with different

SRES scenarios, and identify priority areas that are common

across all scenarios. We also assess the potential risks of planning

conservation areas with a ‘wrong’ scenario. Finally, we evaluate

trade-offs between conserving the present vs. conserving the future

when giving increasing weight to future distributions in relation to

present distributions.

Materials and Methods

Both present (hereafter referred as ‘baseline’) and future

projections of species potential distributions are based on the results

published in [39] and available for download at http://www.

ibiochange.mncn.csic.es/projects/former-projects/alarm/outputs/

data. These models were fitted for 42 amphibian and 64 reptile

species using species distribution data derived from the Atlas of

amphibians and reptiles in Europe [40] and climate parameters

derived from [41]. Five different climate parameters for the period

1961–1991 (referred to as ‘baseline data’) were used. Variables

included mean annual temperature (uC), mean temperature of the

coldest month (uC), mean temperature of the warmest month (uC),

mean annual summed precipitation (mm), and mean sum of

precipitation between July and September (mm). The future

projected values for the climate variables were derived with the

HadCM3 (Hadley Centre for Climate Prediction and Research’s

General Circulation Model) [41] climate change model following

four IPCC SRES storylines (A1F, A2, B1, B2) [42].

In [39] potential distributions at 109 (ca. 10–16 km) grid cells

were modelled with four niche-based modelling techniques

(artificial neural networks [43], generalized linear models [44],

generalized additive models [45], and classification tree analyses

[46]) and distributions were projected into the future (2080) using

an earlier S-Plus version of the well-known modelling BIOMOD

package in R [47]. In our analysis we filtered the modelled

probabilities of occurrence for the baseline period with observa-

tional data [40] so that values for cells from which no observations

have been made for species were set to zero [9]. For each species

we obtain four baseline distributions (Bm) and 16 future

distributions (Fm,s), m denoting the type of bioclimatic model (see

above) and s denoting the SRES scenario (Fig. 1).

Conservation Priority Setting
We implemented a spatial conservation prioritization procedure

that accounted for (i) multiple species, (ii) their estimated local

probability of occurrence both for the baseline and future periods,

(iii) basic connectivity requirements of the species, (iv) alternative

climate change scenarios and their impacts on species, (v)

uncertainty in the modelling of species potential distributions,

and (vi) different levels of confidence about the baseline and future

modelled distributions as well as the influences of connectivity.

We implemented the conservation prioritization analysis using

the Zonation framework and software [48,49], which is particu-

larly well suited for the analysis of large GIS-based raster grid data

sets that describe the distributions of many biodiversity features,

such as species, habitats or ecosystem services [50–52]. Zonation

does not use a-priori defined conservation targets. Rather, it

produces a hierarchical priority ranking across all grid cells in the

landscape based on occurrence levels and connectivities for species

in cells, while balancing the solution simultaneously for all species

used in the analysis [48,53]. The areas of highest priority across

species can then be identified simply by taking any given amount

of area with highest priority ranks. After a top area has been

selected, it is possible to calculate from original distribution data

how large a proportion of each species’ entire distribution is

captured by that selection. Below, we explain how connectivity

and uncertainties were accounted for using the features available

in the publicly available Zonation software, versions 2.0 and later

[49] (www.helsinki.fi/bioscience/consplan/). We used the Core

Area Zonation variant, which favours selection of high-quality

areas for all conservation features even when they occur in

relatively feature-poor areas [48,54].

The primary units in our analysis were the modelled baseline

and future species distributions. Connectivity from the baseline

situation to the future was implemented via the ecological

interactions (type 1) technique of Zonation (called ‘‘species

interactions’’ in version 2.0), which allows calculation of connec-

tivity between two distributions [55,56]. This technique weights

the local quality of one distribution by metapopulation-type

connectivity to another distribution, either between species or, as

in this case, between baseline and future distributions of the same

species. We used two connectivity distributions per species, one for

the connectivity from the baseline to the future and another for

connectivity back from the future to baseline (Fig. 1). The former

of these distributions represents source areas from where dispersal

to future distribution areas is expected. The latter represents

stepping-stones, which are expected to help species reach the core

areas of their future distributions. The spatial scale of the

interaction (here connectivity) is set by a species-specific parameter

bj, which scales the mean decay distance of a two-dimensional

negative-exponential dispersal kernel. Amphibians and reptiles are

in general considered to be poor dispersers [57–59], although

there are large variations in reported dispersal distances [57,60].

As movement of amphibians is highly limited by their dependency

on available water, and because both amphibians and reptiles are

ectotherms characterized by strong home range fidelity, it has

been speculated that species in these two groups will experience

particularly large challenges in tracking climate change by

dispersal [58]. Based on information retrieved from literature we

set the parameter bj to correspond a conservative 0.2 km/year

dispersal capability.

Thus, for one species we have four potentially relevant

distributions to be covered in priority setting under each SRESS

scenario. These are the baseline, future, dispersal source (connec-

tivity from the baseline to the future) and stepping stone

(connectivity from the future to the baseline) distributions, denoted

by Bjsm, Fjsm, CBjsm and CFjsm, respectively, where j is index for

species, s is index for emission scenario and m is index for habitat

modelling method (Fig. 1). In the full Zonation runs described in

Figure 1 all four distributions for each species were prioritized

simultaneously. We also looked at the relevant importance of each

of the four distributions within the best 10% of the full run: this

was achieved by repeating the prioritization across all species, but

using only one type of distribution at a time (i.e. only present, only

connectivity to present etc.) and cutting the resulting priority map

with the top 10% priorities of the full run. Each grid cell within the

top 10% priorities where then qualified as important present core,
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source, stepping stone or future core depending on which of the

categories it received the highest priority ranking in.

Note that these quantities are matrices across the landscape;

each distribution is a rectangular grid with the value P for each

grid cell representing the predicted feature (species probability of

occurrence or connectivity), conditional on the emission scenario

and habitat model used. We produced an aggregate best

prediction, P*js, for a species j in each grid cell as the mean

across all different models, assuming emission scenario s. Using the

future distribution as example, the aggregated best prediction

would be F*
js = Em[Fjsm], where Em[] represents expected value

taken across all distribution models m (i.e. the mean). Another

quantity used is the (again cell-specific) uncertainty in the

prediction for species at any given location, measured as the

standard deviation of the predictions across models, and denoted

by SDm[Fjsm].

Accounting for Uncertainties
Throughout prioritization exercises we account for various

sources of uncertainty and quantify their impacts in the following

ways (see also Fig. 1):

1. Distribution discounting to account for variation between niche

models. Distribution discounting penalizes predicted occur-

rence probabilities according to a measure of uncertainty

associated with the prediction [61]. In the present application,

a multiple of the standard deviation of predictions across

models, SDm[Pjsm], was subtracted from the mean prediction

Figure 2. Areas of disagreement between models and across species, for scenarios A1, A2, B1, and B2, all for 2080. Uncertainty is
illustrated as the per grid average across species of the coefficient of variation (ratio between the standard deviation and the mean) of predicted
suitabilities by the four bioclimatic models. Orange areas indicate cells for which on average the standard deviation equals the mean.
doi:10.1371/journal.pone.0053315.g002
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P*
j, which represented our nominal best estimate. The

subtraction is applied to each cell separately. Technically, we

set Pjs(a) = max{0, P*
js2aSDm[Pjsm]}, where a is a parameter

called the horizon of uncertainty in information-gap decision

theory [62]. Our base-analysis used a= 1, corresponding to

subtracting one standard deviation off the mean. With this

procedure we give the highest value to those species

occurrences j that have high mean probability and low

standard deviation across all niche models. Distribution

discounting is applied separately to the baseline and future

distributions before calculating connectivity between baseline

and future layers.

2. Impacts of different potential climate scenarios. Analyses are

done separately for each emission scenario and solutions from

different scenarios are compared using statistical tests. In

particular, no averaging across emission scenarios was done at

any point, because the scenarios are considered mutually

exclusive. More specifically, by using a paired T-test we assess if

conservation prioritizations based on different potential futures

differ significantly in the amount of species present (baseline)

and future distributions covered by the best 10% priority rank

areas. In addition we undertake a risk and opportunity analysis

by planning a conservation prioritization using one scenario

and evaluating it against the others. This sensitivity analysis

illustrates the potential situation where conservation planning

has been done with wrong expectations of future impacts. We

also explore which species were most adversely affected if

conservation actions are based on false assumptions about the

future development of climate change.

3. Weighting of baseline and future. Our third uncertainty

approach is to weight the priority of baseline and future

distributions of species differentially. This operation recognizes

that knowledge about the future is more uncertain than the

present, and that our understanding on the influence of

connectivity is less certain than our understanding on the

influence of habitat quality. This is because future predictions

include major uncertainty about the degree of climate change

that will happen, and on top of that the connectivity

distributions include further uncertainty about species-specific

dispersal and colonization distances. Hence, connectivity from

future to present (CFj) receives the lowest weight as it includes

uncertainty about both species-specific connectivity features as

well as future habitat quality upon which the connectivity

calculations are based. Denoting by w(D) the weight given for a

particular kind of a distribution D, qualitative considerations of

uncertainty suggest that w(Bj).w(CBj) $ w(Fj), . w(CFj). We use

w(Bj) = 1, and varying weights (0–1) for the future and

connectivity layers scaled as follows: w(CBj) = w(Fj) = 2x w(CFj).

We evaluate reductions and gains in conservation value for both

the baseline and the future with increasing weight given to future

distributions. When exploring the first two sources of uncertainty

(points 1 and 2 above), we give equal weights to baseline and

future distributions, hence following the above logic

w(Bj) = w(CBj) = w(Fj) = 2x w(CFj).

Results

Uncertainty due to the choice of niche model varied substan-

tially across species (Fig. S1), between-model variation in the

predicted probability of occurrences being notably larger for

projected future distributions than for the baseline period. Despite

this, we could identify spatially congruent regions of both high

model agreement and disagreement across all species (Fig. 2).

Using the distribution discounting procedure we were able to

account for uncertainty in predictions and thus prioritize areas of

highest quality and highest certainty (see Fig. S2 for an example

with scenario A1).

For each SRESS scenario (A1, A2, B1 and B2) we produced a

conservation prioritization that accounted simultaneously for

species baseline distributions, future distributions, sources and

stepping stones (Bjsm, Fjsm, CBjsm and CFjsm). When species baseline

and future distributions are weighted equally, the top 10% of all

prioritizations cover a larger average proportion of species baseline

distributions in comparison to future distributions (Table 1,

diagonal and last column). Optimizing conservation for different

SRES scenarios resulted in small but significant differences, both

in the conservation level achieved for species baseline distributions

(Paired T-test; p,0.001 in all comparisons); as for future

distributions (Paired T-test, p,0.001 in all comparisons except

between B1 and B2, p = 0.054, and between B1 and A2 p = 0.082).

Scenario B2 resulted in highest overall conservation outcomes,

where the top 10% of the landscape could potentially protect the

highest average representation across species’ baseline and future

distributions (Table 1). This is because present and future

distributions are spatially most aggregated under scenario B2.

Scenario A1, on the other hand, resulted in lowest conservation

outcomes, both for baseline and future distributions, caused by a

higher spatial spread of predictions for scenario A1. Optimizing

conservation for different scenarios resulted in high differences in

the expected protection of future distributions for some species.

For example, almost 56% of the future distribution of the Iberian

Rock Lizard (Lacerta monticola) could be protected when optimiza-

Table 1. Average representation level of baseline and future distributions, and expected conservation losses when planning is
done for one scenario, but another scenario takes place.

Scenario that takes place A1 A2 B1 B2 Baseline

Planned with A1 27.6 1.0 (16)** 2.3 (18)*** 2.2 (16)*** 38.5

A2 3.5 (60)*** 29.9 1.8 (17)*** 1.0 (4)*** 40.6

B1 3.5 (67)** 0.5 (22) ns 30.6 0.4 (11)** 41.0

B2 3.7 (66)*** 0.1 (20) ns 0.9 (21) ns 31.3 41.5

The diagonal, in italics, shows the average proportion of future distributions of species represented within the top 10% priority sites when planning is done for a correct
scenario (e.g. we plan for scenario A1 and scenario A1 takes place). Outside the diagonal, bold numbers indicate the average percentage loss in protection of future
distributions that species experience when planning is done for one scenario, but another scenario takes place. Numbers in brackets show the maximum individual loss
across the species pool, and stars indicate significance level for pair-wise comparisons across all species (Paired T-test, ***p,0.001;**p,0.01; *p,0.05; nsnon-significant).
Last column shows the average proportion of species baseline distributions protected, when prioritization is done with each of the four SRES scenarios. In all solutions
baseline and future distributions are weighted equally.
doi:10.1371/journal.pone.0053315.t001
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tion was done with scenario B1, but only 27% if scenario A1 was

used.

Despite these differences, the spatial overlap between the

conservation priorities identified for any two scenarios was high,

70–84%, being the highest between scenarios A2 and B2 (Fig. 3a).

These common top priority areas could be classified into their

relative roles as baseline and future cores, sources and stepping

stones (Fig. 3b). Areas identified as highly important baseline cores

with the four scenarios tended to be located in the Mediterranean

region and in Eastern Europe, whereas the majority of the

important future core areas were located in northerly parts of

Europe (e.g. Scandinavia, Great-Britain and Ireland). Sources or

stepping stones coincided for many species due to overlapping

baseline and future distributions and the relatively short estimated

dispersal distances. Overall, the solutions for the four scenarios

shared 42% of the top 10% priority cells (Fig. 3a). Together, these

common priorities covering 6.4% of the region could protect

30.7% for the baseline period and 12.3%, 14.9%, 15.6% and

16.2% for scenarios A1, A2, B1 and B2 correspondingly. Notably,

over 30% of the cells were identified as priority in a single

scenario.

Next we evaluated what are the gains or losses when we

optimise conservation priorities assuming one scenario, but then

another scenario takes place. This cross evaluation revealed

notable losses in expected protection of up to 60% for some

species. Largest reductions in average expected protection

occurred if scenario A1 took place, but planning was done for

any other scenario (Table 1; Fig.4). Similarly, a larger number of

positive surprises [61] in the average coverage are expected when

planning is done for A1 but other scenarios take place. However,

note that these positive surprises, as measured in terms of average

coverage of distributions, come with the cost of not achieving a

balanced conservation solution across all species (Table S1). This

can be seen in the variation of expected losses and gains across

species (Fig. 4). Both the baseline extent of climatic suitability and

the expected contraction or expansion of this suitability can

partially explain these differences (Spearman’s rank correlations

for the significant cases: rho = 0.4–0.66, p,0.001 for total baseline

suitability, and rho = 0.25–0.63, p = ,0.001–0.03 for expected

contraction/expansion; Table S2), with a tendency for large-range

and extensively expanding species to show smaller differences.

Species such as Pygmy Algyroides (Algyroides fitzingeri) and

Tyrrhenian Wall Lizard (Podarcis tiliguerta) with small baseline

distributions and even smaller future distributions were the ones

for which planning for the wrong scenario made largest negative

differences.

Exploration of the trade-offs between conserving the future and

conserving the baseline revealed interesting patterns. Figure 5

shows the relative reductions in coverage of species baseline

distributions and the relative gains in the coverage of species future

distributions, when increasing weight is given to the future. Both

gains and losses were largest for scenarios A1. The trade-off curves

indicate that future layers should preferably be assigned a weight

below one (i.e. larger priority to the baseline than the future) across

all scenarios. Gain-loss differences (Fig. 5, grey line) peak at

weights 0.25–0.4 for scenarios A2, B1 and B2, and at weight of 0.6

for scenario A1. Scenario A1 exhibited an interesting trade-off

curve, where gains in future protection increase rapidly with small

weights without significant reductions of baseline conservation,

and the gain-loss difference remains highly positive even at high

weights and large sacrifices in baseline conservation. In contrast,

the curve for A2 flattens early, reflecting that increasing the weight

given to the future results in quickly increasing baseline losses with

only minor gains for future conservation achievements. Risk-

averse planners might prefer to approach the problem of optimal

weighting by choosing a maximum tolerable reduction of baseline

protection level. A sacrifice of at most 5% of the baseline

protection level implies different weights between 0.26 (A1) and

0.48 (B2) and result in gains between 11 and 14% (for scenarios B1

and A1, respectively) (Table 2).

Discussion

In a crisis discipline like conservation biology [63], proactive

efforts should take advantage of projected changes and offer

solutions that enable decisions under inevitable levels of uncer-

tainties. We have demonstrated a framework to deal with

uncertainties, and illustrated it by identifying conservation

priorities for amphibians and reptiles in Europe.

Reptiles and especially amphibians are threatened worldwide

[64,65] and recent studies implicate global warming as one of the

causes of declines observed in these taxa [66–69]. Even so, niche-

based projections of amphibian and reptile responses to warming

in Europe are not overly alarming, with a great proportion of

amphibian and reptile species projected to experience increases in

climatic suitability across central and eastern Europe [39].

However, the degree to which the positive development in

climatic suitability translates to distribution expansions is highly

dependent on species dispersal abilities. [39] show that if all species

are unable to disperse, then most species are in fact projected to

lose range. Our models by the year 2080 indicate that the

distributions of European amphibians and reptiles would change

most drastically under the strong climate change scenario A1.

Other scenarios show more moderate changes, future distributions

under scenario B1 having the highest overlap with baseline

distributions.

Dispersal is one of the largest sources of uncertainty in the

context of climate change conservation. Yet most of the climate

impact assessments are conducted with either a full dispersal or no

dispersal (or both) assumptions. Only rarely plausible dispersal

rates of the taxa under consideration are estimated and used (e.g.

[21]). Here we showed how dispersal rates (whether species

specific or common) can be technically efficiently accounted for,

using a conservative estimate of dispersal which is in line with the

published estimates for these taxonomic groups [57,59,70,71].

Accounting for dispersal limitations in conservation planning is

important, and we have shown here how species dispersal can be

facilitated by identifying well connected sites between known

present and potential future locations via the protection of sources

and stepping stones.

Figure 3. Top 10% conservation priorities for European amphibian and reptiles, including baseline distributions, projected future
distributions and connectivity between them, when equal weight is given to present and future. A) Overlap of priorities across the four
SRESS scenarios. Red indicates areas identified as top 10% priorities with all four scenarios; blue areas are identified by only one scenario B)
Classification of the top 10% priorities into their relative importance as baseline cores, future cores, sources and stepping stones. Baseline and future
cores were identified as the areas from the top ranked cells that according to habitat quality would be most important for species within their present
and future distributions. Sources indicate areas that are most important for dispersal from present to future areas as climate changes. Similarly,
stepping stones facilitate species migration to future core areas. They are parts of the predicted future distribution best connected to the present
distribution.
doi:10.1371/journal.pone.0053315.g003
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Figure 4. Relative losses and gains for a combination of planning and evaluation scenarios, indicated by negative (loss) and
positive (gain) values in the y axis. Circles are species and circle size reflects the sum of baseline climatic suitability across cells. Panels A–D
correspond to evaluation scenarios A1, A2, B1, and B2 respectively. Graphs within these panels correspond to the planning scenarios. Species are
distributed along the x axis according to the expected change in future climatic suitability according to the evaluation scenario. Negative values in
the x axis indicate species expected to experience a decrease in future climatic suitability.
doi:10.1371/journal.pone.0053315.g004
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We found that bioclimatic projections for the amphibians and

reptiles of Europe varied significantly amongst the four niche

models used. Yet we were able to account for this range of

predictions in conservation prioritization by penalizing those

locations displaying highest uncertainty with the distribution

discounting procedure. Ensembles of forecasts, however, are often

treated with common consensus approaches such as ensemble

mean, weighted ensemble mean or ensemble median. Such

metrics could be used similarly in the framework presented here,

as could other values integrating information across several models

Figure 5. Trade-off curves for reductions in baseline conservation level (blue) and gains in future conservation level (red), as higher
weight is given to the future, for the 4 SRESS scenarios. Each point corresponds to a different set of spatial priorities, selected with a different
combination of weights for baseline and future layers. Baseline always receives a weight of one, while weight for the future is varied from zero to one.
The difference between gain and loss curves is indicated with a grey line.
doi:10.1371/journal.pone.0053315.g005

Table 2. Comparison of conservation outcomes with risk averse weighting.

Scenario that takes place A1 A2 B1 B2 Weight given to future

Planned with A1 22.9 (1.7) 26.7 (2.6) 26.6 (2.5) 27.9 (3.0) 0.26

A2 21.6 (1.7) 28.1 (2.5) 27.7 (3.6) 29.5 (2.9) 0.38

B1 21.9 (1.2) 28.0 (2.2) 28.6 (3.2) 29.7 (2.6) 0.4

B2 22.1 (1.0) 28.5 (2.2) 28.6 (3.3) 30.5 (2.6) 0.48

Here weight given to the future is determined with the trade-off curves (Fig. 4), by accepting a reduction of 5% in conservation of baseline distributions. The diagonal
shows the average and minimum (in brackets) proportion of species future distributions represented in the top 10% priority sites, when planning is done with same
scenario that eventually takes place. Numbers outside diagonal show the average and minimum representation of future distributions when planning is done for one
scenario, but another takes place. Top 10% of all prioritizations achieve, on average, 45% representation of species baseline time period distributions, minimum
representation across species being 4%.
doi:10.1371/journal.pone.0053315.t002
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– see [35]. The distribution discounting technique [61], which we

used here, is a simple way of accounting for the first-order effects

of uncertainty in pattern-based spatial conservation prioritization.

We have also illustrated the importance of trade-offs in securing

both present and future representation of species. By giving

varying weights to future sources, stepping stones and future core

areas and exploring the resulting gain-loss curves we showed that

compromises can be achieved without overly much jeopardising

the conservation value achievable for baseline. Trading present for

future or vice versa requires careful evaluation of the minimum

coverage levels achieved for the present, as it is obvious that one

cannot protect the future without having the species persisting

through time, starting from the present. But determining what is a

suitable level of coverage that allows persistence is not a trivial

task. We found, however, that if conservation priorities are

identified by looking at baseline distributions only, and ignoring

future projections, some species may have little chances to persist

in these locations because coverage of future distribution may

become substantially reduced (a reduction of 30% on average if

scenario A1 takes place). For example, the European Fire-Bellied

Toad (Bombina bombina) is currently widespread but has been

reported to have a declining population trend [72]. It would not

have had any of its potential future distributions covered by our

present baseline-only prioritization.

The large differences between the outcomes obtained when

planning for different scenarios arise because baseline and future

distributions overlap least in A1, and most in B1. Planning for

various scenarios and evaluating overlap of priorities is recom-

mended when searching for robust solutions, but we also

emphasize the importance of a sensitivity analysis when doing

scenario assessment, which helps identify both risks and potential

for positive surprises. Different levels of risk-aversion in conserva-

tion planning, or conflicting policy agendas will then dictate what

losses can be tolerated or how much weight is given to the

possibility of positive surprises. For this particular example it at

first appears as if worst conservation outcomes would follow

planning for scenario A1, i.e. lower present and future coverage.

However, a very risk-averse planner applying the precautionary

principle may precisely chose to plan for A1, as priorities thus

identified are expected to result in smallest negative surprises if

some other climate scenario occurs. Having an adequate outcome

for scenario A1 is harder than obtaining an adequate outcome for

the other scenarios: in this sense planning for A1 can be seen as a

risk-averse strategy. On the other hand, losses can be large if plans

are based on any other scenario, but A1 takes place. Also, if the

outcomes of these scenarios were to influence mitigation policies, it

is clear that scenario A1 is the one we wish to avoid.

Conclusions
Conservation planning in a changing world is a challenging

task. Nonetheless studies evaluating the future performance of

protected areas [11,13,73] call for the consideration of biodiversity

on the move in conservation planning. Unfortunately, the

magnitude of uncertainty in species’ bioclimatic modelling is

currently so great that it might lead conservation planners, policy

makers and other stakeholders to question the overall usefulness of

science as an aid to plan for the near future. However, uncertainty

is no excuse for inaction when the world is changing as rapidly as it

is. We have presented a framework that encourages action despite

uncertainties. Overall, we recommend the following process: the

use of ensembles of forecasts to account for reasonable variation in

projections; the exploration of uncertainties associated with socio-

economic scenarios, and the evaluation of potential losses incurred

if planning is done for the wrong scenario. When conservation

planning resources are limited, and levels of protection for present-

day biodiversity need to be traded-off against uncertain future

extent of protection, it is necessary to explore such trade-offs and

to identify solutions that minimally compromise present conser-

vation for largest future benefits.

Supporting Information

Figure S1 Variation of uncertainty from niche models.
Variation of uncertainty is calculated using the mean of

probabilities across all niche models and calculated for each

species and grid cell. One standard deviation (SD) of the species-

grid-specific mean is divided by the mean itself to reflect the

magnitude of variation in each cell. These values are then

averaged across cells for each species to produce boxplots of

overall variation of uncertainty, presented here separately for

present and each of the future scenarios.

(TIF)

Figure S2 Impact of distribution discounting to spatial
prioritization. Panels A and B represent prioritizations done for

future distributions under scenario A1 without (A) and with (B)

discounting, respectively. The brown colors highlight the best 10%

of the entire area. Areas of high uncertainty (C, red color) affect

the prioritization result so that sites with high conservation value

but large variation among niche models, and hence large

uncertainty, are penalized by the discounting (red arrows in A

and B). Note that some areas remain highly prioritized despite

notable uncertainty (blue arrows). These are areas of high

conservation value across all species, and although variation in

predictions is high, the mean remains high after subtraction of the

error.

(TIF)

Table S1 Cross evaluation of conservation outcomes
when planning is done with one scenario, but another
takes place. Numbers outside the diagonal show the percentage

loss or gain in the expected average representation of future

distributions in the top 10% priorities when planning is done with

a wrong scenario. For example, if we plan conservation priorities

based on scenario A1 (first row), and A1 actually takes place (first

column), the top 10% priority sites will capture, on average, 27.6%

of species A1 distributions (Table 1). But if scenario A2 takes place

(first row, second column), the priority sites that were selected

based on A1 will capture, on average, 4.3% more of species A2

distributions then what would be achieved if prioritization was

done with A2. Note that this apparent gain in the protection of

future sites comes with a cost of reduced protection in species

baseline distributions. Here baseline and future distributions are

weighted equally.

(DOCX)

Table S2 Correlation between expected conservation gain/loss

of future distributions in the cross-evaluations and (A) extent of

species current climatic suitability, or (B) expected contraction/

expansion of climatic suitability. Expected change in climatic

suitability is calculated between present and realized SRES

scenario (i.e. scenario that takes place). Numbers show Spearman’s

rank correlation coeffients and stars indicate significance level

(***p,0.001; **p,0.01; *p,0.05; nsnon-significant).

(DOCX)
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